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PREFACE

This textbook is an outgrowth of a three-semester-hour classroom course
presented to juniors at the Moore School of Electrical Engineering (Uni-
versity of Pennsylvania) by a variety of instructors over the past nine
years. The material has been arranged and selected to suit the needs of
a modern engineering curriculum. On the whole, it has been met with
interest and enthusiasm by the students.

The shift in engineering education from art and design considerations
to conceptual and theoretical aspects calls for revamping the traditional
treatment of the subject of electrical measurements. There is little room
for design and construction details of components, instruments, and other
apparatus; even less for detailed procedures and manipulative aspects.
These and other features must be curtailed to permit incorporation of
broader and more enduring ideas. A rich supply of analytical material,
highly appropriate for stimulating creative thinking, is available in the
field of electrical measurements.  Quantitative significance of engineering
approximations, theoretical limitations of electrical and electromechanical
systems, fundamental bases for various methods of measurement, and
many other ideas may be handled without a clutter of detailed practical
considerations.

A technician may be trained to perform measurements, but the engineer
must contrive experiments and assess their soundness, preferably in
advance, to ensure economical use of laboratory time. Limitations and
flaws of measurement systems must be uncovered and understood, and
this often demands a high level of analytical ability. Istimates of
attainable accuracy must be made, and results interpreted and presented
intelligently in accordance with accepted scientific practice. These
requirements, and others, demand a strong foundation in concepts and
basic principles. With such background, the graduate engineer may
quickly learn the characteristies and limitations of specific equipment
encountered in practice, even though he may never have studied the
device explicitly in school. He is able to discern similarities in methods
and techniques, rather than becoming lost in a maze of minutiae. If a
penetrating and eritical attitude is developed, the mistake of simply
“taking readings” without an understanding of the basic phenomena and
the interaction of all pertinent factors is less likely to occur.

vil



viii PREFACE

Emphasis on concepts and analysis fits nicely into a measurements
course in the junior or senior year. The student is equipped with some
knowledge of calculus, differential equations, physies, and electrie circuits
and fields. He has also had some laboratory experience. The time is
ripe for bringing all this information to bear on a single area. The subject
of electrical measurements is particularly well suited to provide this con-
solidation of ideas. The prime intention has been to give the student an
opportunity to strengthen and integrate his knowledge, perhaps relearning
what he thought he already understood. It may be a stimulating and
rewarding experience for the student to apply his knowledge to problems
of obvious importance in engineering. The essential objective of this
textbook is to develop in the student the attitudes and comprehension
necessary for the analytical solution of engineering problems. At the
same time, the student should become acquainted with methods of
measurement, with the theory of operation of certain electrical instru-
ments, and with the nature and theory of errors of measurement.

This book is intended for classroom use and stresses methods, concepts,
and analysis throughout. It is not a treatise on electrical measurement
and does not presume to attain complete coverage of this broad field.
The treatment departs markedly from conventional types of the past.
A discussion of electrical standards, deemed sufficient to orient the stu-
dent, is confined to one brief section. Systems of units, ably treated in
many books from different points of view, are not discussed explicitly. Tt
is assumed that the reader is acquainted with the mks system of units,
which is used throughout. Magnetic measurements, instrument trans-
formers, polyphase measurements, and many other topics are omitted.
Principles of analysis rather than topical coverage have been sought.
The large quantity of empirieal and practical information often found in
measurement books has been reduced sharply.  Also, discussion of manip-
ulative procedures in practieal equipment has been suppressed, It is
helieved that these items are best learned from direet experience in the
laboratory when the engineer is confronted with an actual problem whose
solution is important enough to make such detail meaningful. Generally,
the descriptive material presented is only that judged necessary to provide
the student with an intelligent basis upon which to undertake analyses.
Finally, the profusion of photographs of commercial apparatus frequently
found in texts on this subject has been greatly curtailed. It is felt that
such material is, at best, a poor substitute for examination of actual
instruments available at most universities.

Much of the analysis is focused on electrie circuits, and for that reason
a circuit-review chapter is included. Other analyses, such as those
required in force caleulations, are developed carefully from first principles.
A limited treatment of the application of statistics to measurement errors
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is presented in more complete form than in other measurement texts.
The topic of statistics is too often slighted in engineering curricula, and
its inclusion represents at least a partial satisfaction of this need. Such
analysis techniques as differential methods, application of network
theorems, narrow-band approximations, series expansions, and many
others not confined exclusively to the field of measurement by any means,
are utilized as required. The compensation theorem is highlighted
because it is superior to Thévenin’s theorem in bridge analysis. Sources
of errors in ohmmeters, potentiometers, bridges, and other circuits and
systems are treated analytically. Techniques for treatment of data are
suggested throughout the text and a final chapter is devoted to this
often neglected subject.

The chapter sequence has evolved from classroom experience.  Galva-
nometers are studied first as an obviously important and absorbing topie.
This provides a background of examples used in the study of errors of
measurement, which for many students is a difficult subjeet and not as
successfully treated at the start of a course. Methods of measurement
are approached in the two eategories of deflection and null methods, each
of which is subdivided further. Conventional categories of resistance
measurements, voltage measurements, power measurements, and so
forth, are abandoned. Most of the examples are taken from the d-¢ and
low-frequency areas, including both high- and low-precision methods.
Eleetronic instruments are only touched upon, the one serious electronic
analysis being that of the diode peak voltmeter. The sequence of the
remaining chapters was followed in most of the courses taught, but they
may be taken up in any order after Chap. 9 has been completed.

Problems at the end of each chapter constitute one of the important
features of this book. In some cases they call upon the student to supply
steps omitted in the text development. In most cases, however, they
reprosent new problems that call for originality and careful thought,
without execessive computation and formula substitution. Many topics
treated lightly in the text are strengthened by problems that expand upon
the framework provided. Most of the problems have been used as
examination questions. Answers to the problems are given at the end
of the book to enable the student to ascertain the correctness of his work.
Because the student cannot be expected to know which problem he is
ready to attack at any particular phase of study, each problem includes
a section number in parenthesis indicating the section the student should
reach before attempting the problem. It is strongly recommended that
a course based on this book be primarily a problem-solving course.  Only
in this way does the student acquire a sound, quantitative understanding
of analysis.

No claim is made that a classroom course, or a textbook, is a replace-
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ment for laboratory experience. Certain aspects of measurement can be
learned only in the laboratory. However, laboratory experience is
frequently of limited value to the student because of his failure or inability
to analyze his laboratory problem thoroughly. Conecepts and analysis
are vital elements required to accomplish a measurement task satisfac-
torily, and this is the area to which this text is devoted. However,
laboratory matters are not slighted entirely. Practical implications of
theoretical results are suggested throughout the text. For instance, the
important idea that the quantity being measured may be molested in the
very act of measuring it is stressed in quantitative detail by many
different examples.

The wvast literature in periodicals, textbooks, special bulletins, and
manufacturer’s pamphlets, all pertaining to electrical measurements, is
felt to be too extensive to suit the needs of an introductory treatment in
which analytical concepts are dominant. Therefore, only a list of text-
books considered directly pertinent to the subject is given at the end of
the book. Some older works in electrical measurements are included to
encourage the student to review the extraordinary growth in the field of
measurements over the past few decades. It is hoped that this treatment
will not appear so antiquated in as many years hence.

The author is indebted to his many colleagues who, over the years,
made contributions reflected in this book in the form of problems, methods
of approach, and analyses. In many cases, the identity of the individual
responsible for a specific item has been lost. However, the ideas of
Donald F. Hunt have been largely incorporated in the statistical approach
used in Chaps. 6 and 7, as well as in several other sections. It is a
pleasure to utilize his suggestions. Contributions of Edward I. Haw-
thorne and Howard E. Tompkins are also acknowledged. Neely F.
Matthews was kind enough to read and check the entire manuscript.
The influence of Harry Sohon, under whose supervision the author
first taught this subject, appears in many forms throughout the entire
treatment. The remarkable cooperation of the author’s wife has been
of vital help and is most gratefully appreciated.

FErnest Frank
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CHAPTER 1

INTRODUCTION

The engineer is inevitably confronted with measurements, whether he
merely uses them as tools to obtain information or becomes involved in
fundamental studies of measurement theory. He must be acquainted
with apparatus, methods, limitations, techniques, and accuracy capabili-
ties of measurements. Yet it is impossible to keep abreast of all the
ramifications of this highly developed subject. An effective approach is
to become conversant with basic concepts of measurement and some
methods that have been found useful. A strong foundation in principles
provides the structure that supports and engenders the comprehension
necessary for solution of specific problems.

The important thing is to learn the discipline of analytical thought.
Without such discipline, individual progress in any scientific field is
likely to become frustrated and opportunities for achievement improb-
able. With such discipline, the horizons are virtually unlimited.

1-1. Development and Scope of Electrical Measurements. The
development of science has been inseparable from the development of
measurement. Laws of nature have been uncovered after means were
found to detect and measure physical quantities. Scientific theories have
not been accepted without reservation until confirmed by measurement.
Obviously, the role of measurement is intimately interwoven with all the
knowledge that has been acquired and put to use in the physical sciences.
Measurement remains indispensable as an intrinsic part of scientific
method and knowledge.

The laws of electricity represent a relatively recent historical develop-
ment in the growth of physical science. Most of these laws were
uncovered in the latter part of the eighteenth century and the early part
of the nineteenth century, and have been closely related to the develop-
ment of means for detecting and measuring electrical quantities. Men
engaged in early investigations of this period, many of whom were physi-
cists, are not easily forgotten because their names have become accepted
terminology in specifying units and dimensions of electrical and other
physical quantities. Some of the more outstanding contributors, listed
in chronological order, include:

1
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William Gilbert (1540-1603)

Charles Augustin de Coulomb (1736-1806)
James Watt (1736-1819)

Alessandro Volta (1745-1827)

André Marie Ampére (1775-1836)

Hans Christian Oersted (1777-1851)

Karl Friedrich Gauss (1777-1855)

George Simon Ohm (1787-1854)

Michael Faraday (1791-1867)

Joseph Henry (1797-1878)

Wilhelm Eduard Weber (1804—1891)
James Prescott Joule (1818—-1889)

William Thomson, 1st Baron Kelvin (1824-1907)
James Clerk Maxwell (1831-1879)

While these men have been largely responsible for fundamental develop-
ments, there are countless other workers who have made contributions in
the general field of electricity as well as in the specific area of electrical
measurements. Many of the instruments used today are essentially the
same as those originally devised by these dedicated scientists. Few
methods and techniques of measurement are new, in the sense that the
same basic ideas were used in early developments. The student is urged
to explore the lives and contributions of these men.

Accounts of initial progress are fascinating. In this modern day of
sensitive instruments and reliable sources of electrical energy, which are
largely taken for granted, it is difficult to appreciate the incredible handi-
caps of equipment limitations with which these workers contended.
Their overwhelming success in probing the mysteries of electricity in the
face of such handicaps is indeed a tribute to the human mind. Other
engaging aspects of the development of electrical measurements include
the interplay between mathematics and physics, the unfolding of rela-
tionships between electrical and mechanical quantities, and the fact that
classic ideas still form the cornerstone upon which much of current
practice is based.

The field of electrical measurements has, in its brief history, shown
phenomenal growth. In the latter part of the nineteenth century, many
different instruments and methods for their use were devised. The galva-
nometer, thermocouple and rectifier instruments, moving-iron meters,
electrodynamometer movement, and others came into being, at least in
crude form. The electrical bridge, the potentiometer, and other null
methods of measurement were conceived. By the start of the twentieth
century, these instruments became more refined, and their general avail-
ability in commercial form enabled measurement methods to come into
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widespread use. These developments, combined with increased avail-
ability of reliable sources of electrical energy, created an environment in
which many workers could pursue electrical measurements. Their inven-
tiveness and ingenuity generated a flood of new applications as the scope
and use of electricity were expanded. Concurrent with this upsurge of
activity, it became increasingly evident that participants throughout the
world required a common language with which to disseminate and com-
pare their explorations and findings. Fortunately, there was fruitful
international cooperation in connection with the establishment of electri-
cal units and standards.

Measurement of nonelectrical quantities by electrical means began to
receive more attention early in this century and marked the beginning of
one of the most vigorous areas in the development and application of
instruments. These developments were, and continue to be, aided sub-
stantially by the introduction of electronic devices. Indication and
recording of nonelectrical quantities have expanded greatly and now
include a tremendous variety of quantities in many different fields such
as fluids (conductivity, density, hydrogen-ion concentration, humidity,
liquid level, pressure, rate of flow, viscosity); heat (radiation, temper-
ature); light (luminous flux, radiant energy, spectra); mechanics (acceler-
ation, displacement, distance, dynamic balance, force, hardness, velocity,
vibration); sound (acoustical pressure, intensity); time (counting, fre-
quency); and others. Examples of electrical measurement of some of
these quantities are presented in this text.

The era of instrumentation has arrived. Not only are indication and
recording receiving much attention, but electronic computing combined
with automatic control is invading an increasing number of fields. These
developments have far-reaching implications with respect to advances in
technology. Such systems enable routine measurements and manipu-
lations to be carried out automatically with little attention from a human
operator. They may be rapid, safe, and accurate. Developments in
the field of electronics, when wedded to the field of measurements, enable
the frequency range to be extended and permit the sensitivity of appa-
ratus to be pushed to the limits of “noise.” Thus, the entire scope of
investigation in the field of electrical measurement is broadened.

The surge of research in electronic instrumentation is based funda-
mentally on older principles and methods and does not eclipse the tra-
ditional aspects of electrical measurements. Where highly precise results
are required, there is not yet a substitute for experimental ability and
creative endeavor. Moreover, there are countless measurement prob-
lems in the low-precision area where there is need for individualized
measurement work using methods and instruments that have evolved
over the past 100 years. Development of new electrical measuring
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devices, along the lines set forth by the array of instruments presently
available, continues in meeting present-day needs. Application of known
principles to new problems, improvement of materials, and other facets of
electrical measurements represent a substantial interest in the modern
laboratory.

1-2. Nature of Measurements and Electrical Standards. Measure-
ment is the process of determining the magnitude of a quantity in com-
parison with another similar quantity. For example, if there are two
different currents in a circuit, each may be measured with the objective
of determining their ratio. Unless a quantitative comparison is sought,
the problem does not belong in the realm of measurements. Thus,
attempts to determine the intrinsic nature of an electric current belong
in the field of physics or philosophy. But the determination of a current
in comparison with 1.0 amp of current is an appropriate measurement
activity.

In principle, any rational basis for intercomparison of measured quanti-
ties may be adopted, and this is sometimes done within the narrow frame-
work of a specific investigation. However, general use of different bases
of comparison would result in a chaotic state of affairs and would hinder
progress. Communication of results and exchange of ideas would be
seriously impaired. Indeed, this difficulty was experienced as the field of
measurements developed and led to international agreement on accepted
standards with which all electrical measurements might be compared.
While the apparatus employed in a given experiment may be many steps
removed from the basic standard, the unit in which it is calibrated has
come from a basic standard that is maintained and used for calibration
purposes.

The fundamental physical standards are length, mass, and time. The
standard of length is the distance between two marks on a certain metal
bar; of mass, the weight of a certain metal cylinder; of time, a specified
fraction of a mean solar day. These standards are related to electrical
quantities by physical laws, such as the force law presented in Sec. 3-3.
Absolute electrical standards are those which are measured in terms of the
three fundamental quantities. The latest step in the evolution of electri-
cal standards was the world-wide adoption, in 1948, of absolute electrical
standards.

Electrical standards existing before 1948 were not based on the funda-
mental quantities length, mass, and time. They consisted of accurately
veproducible arrangements measured in international units. The inter-
national ohm was the resistance of a specified column of mercury; the
international ampere was based on electrolytic deposition in a silver
nitrate solution; the international volt was based on the potential differ-
ence of a cadmium cell. These standards in themselves represented an



§1-3] INTRODUCTION 5

outgrowth of others that had been previously developed and found lack-
ing. For example, an earlier standard for the ohm was the resistance of
a certain coil of platinum-silver alloy, and an earlier standard of potential
difference was based on that of a zinc cell. Thus, the present absolute
standards represent the product of a continuing evolutionary process in
the search for improved constancy, reproducibility, and accuracy. The
absolute standards, recently adopted, differ by only a small amount
(ranging from 0.033 to 0.05 per cent) from former international standards.
These differences are negligible unless very high accuracy is sought.

Measurement of absolute standards (or of the former international
standards) is extremely cumbersome and time-consuming. For instance,
determination of absolute current entails measurement of force between
two coils by means of a weighing balance in a very elaborate and pre-
cisely known system. Therefore, there is a need for secondary standards
that are more convenient to use in calibrating other apparatus. These
secondary standards, which are checked periodically by comparison with
absolute measurements, consist of wire resistors for resistance and cad-
mium cells for potential difference. Intercomparison among multiple
secondary standard units maintained at the National Bureau of Standards
in this country is better than 1 part per million, while absolute standards
are accurate to within a few parts per million. Thus, the quantities with
which all electrical measurements are fundamentally compared are pre-
served within limits that meet accuracy requirements of most present-day
measurements.

1-3. Role of Force in Electrical Measurements. Electrical quantities
desirable to measure include charge, current, potential difference, resist-
ance, capacitance, inductance, and many others. The common entity
almost invariably met in the course of measuring these quantities is
mechanical force. Force is the vehicle through which useful information
is provided. It may seem anomalous to find that electrical measure-
ments are really mechanically based. However, it is the mechanical
force associated with either stationary or moving charges that enables
electricity to be detected, measured, and put to use.

It is obvious from the analysis of each meter movement presented in
this text that a mechanical force on its movable element is responsible
for its deflection. This is true of every deflection-type instrument.
When the force is related to an electrical quantity, it is customary to
say that the electrical quantity is being measured. But what is meant,
more precisely, is that the force is being used as a measure of the electri-
cal quantity. Thus, one may regard most electrical measurements as
the process of relating mechanical forces to electrical quantities upon
which they depend.

Basically, force serves as a mechanism for transference of electrical
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information lying outside the range of direct human perception into
regions where human sensory powers are keen and reliable. The pointer
indication of an ammeter may be estimated by human visual means to
within one-tenth of a scale division, and this might represent a millionth
of an ampere, or less. Using the human ability to sense heat, without
the aid of force conversion, a current-carrying wire may be held in one’s
hand and perhaps a factor of 10 change in current, owing to the change in
heating produced in the wire, might be perceptible. Obviously this is
not a satisfactory quantitative arrangement. A similar situation exists
for many physical quantities that are measured, including nonelectrical
ones as well.

It is fortunate that electrical activity is manifested in terms of mechani-
cal force. Were this not so, many electrical phenomena might go unde-
tected. Of course, some evidence would still be apparent, such as light
and heat produced by the filament of an incandescent lamp when current
is applied. But exploration of quantitative aspects of electrical phe-
nomena would be severely hampered without the forces that may be
used to convert electrical activity into sensitive regions of human per-
ception. This suggests that there well may be other physical phenomena
yet to be discovered of which the human being is presently unaware. If
there are such phenomena, they lie outside the realm of direct sensation
and have yet to be brought into the perceptible domain. What unde-
tected phenomena await discovery? This line of thinking displays the
profound implications of measurement devices. They are, in broad
terms, more than mechanisms enabling quantitative comparison. In
many cases they are devices that make observation possible at all.

1-4. The Art of Measurement. There is much more to executing
measurements than the following of routine standard procedures. For
instance, two individuals confronted with an identical measurement task
might pursue entirely different lines of attack and arrive at different
results even though every effort was made to achieve objective answers.
1t is unavoidable that certain matters rest in the realm of technique and
constitute a form of artistry. The situation is not unlike that in other
artistic fields where a large, conglomerate array of items are blended
together to create an end product.

One characteristic of measurement that must be appreciated, which
accounts in part for the art in measurement, is that all observations are
subject to error. These errors must be evaluated critically. All con-
ditions that may influence the correctness of results must be explored,
understood, and remedied wherever possible. A thorough knowledge of
apparatus and of the method employed is indispensable. Usually a close
theoretical analysis is required. While this book emphasizes analytical
aspects of measurements, it should be realized that there is much more to
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successful performance of measurements than knowledge of underlying
theory. Experience is a significant element for which there is often no
substitute. However, of all factors involved in a successful experiment,
comprehension of underlying theory probably contributes most to obtain-
ing sound results.

The investigator must choose a method, among those known to him,
in terms of such factors as required accuracy, available apparatus, cost of
the over-all effort, time available to obtain the results, ease of performing
the measurements, and skill of personnel to be used. These items are
often conflicting. Having selected the optimum method, the experiment
must be planned in detail and all foreseeable defects remedied. The
apparatus to be used must be studied critically and understood thoroughly
with respect to its manipulative aspects, basic characteristics, accuracy,
and range limitations. Sound techniques must be devised, treatment of
data should be planned in advance, and theoretical analyses involving
all pertinent factors should be performed and interpreted.

Many laboratory practices and “recipes’’ must be observed in the
execution of the measurements to avoid false results. Electrical con-
tacts must be tight, solder connections firm and well made, sliding con-
tacts in good condition. A continuous alertness for defective equipment
is mandatory. Constant vigilance and an attitude of distrust toward
every detail are typically displayed by the experienced investigator.
Difficulties with stray fields and interaction of equipment must be cir-
cumvented where encountered. If there is hope of completing the work,
certain safety precautions and protection of equipment and personnel
from injury are desirable. All these factors, and others, are interwoven
in a complex fashion that contributes to the over-all result. They also
contribute to the satisfaction derived from a job well done.

In the usual type of electrical measurements, accuracy requirements
are of prime importance in determining the amount of care that must
be exercised. Accuracy on the order of a few per cent is rather easily
obtained with modern equipment without excessive skill and technique.
Attainment of accuracy on the order of 1 per cent usually requires the
use of corrections and considerable care in methods and procedures.
Accuracies on the order of 0.1 per cent demand exceedingly meticulous
work in every detail. Special methods are often necessary to avoid use
of instrument deflections which, with few exceptions, are incapable of
rendering so accurate a result. Beyond the range of 0.1 per cent accu-
racy, specialized techniques of high-precision methods must be employed.
Accurate standards, substitution methods, close control of environment,
exhaustive reproducibility tests, statistical analysis of data, and other
techniques become indispensable if reliable results are to be attained.
Thus, required accuracy is often the first coarse guide to the character
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of the measurement task. This does not mean that one may relax in
making even the crudest of measurements, for there is always ample room
for mistakes.

S0 often the difference between a skillfully executed experiment that
yields reliable results and a poorly conceived attempt that gives question-
able answers resides in that ineluctable quality called technique. Exam-
ples of different techniques of measurement are scattered throughout this
text. The student is urged to understand them clearly and to think them
over critically. On the whole, these items consist of what might be called
clever practices having superiority and purposeful advantages over first
approaches that might be devised. They are often subtle and evolve
only after a thorough study of methods and procedures, or perhaps after
repeated failures of trying various schemes in the laboratory. These
items of technique do not necessarily come easily. A helpful but often
overlooked guide is that of planning the treatment of data in advance of
performing the actual experiment. This has the advantage of requiring
theoretical analysis to anticipate the results, with other attendant bene-
fits. In addition, advanced planning helps in the conduect of the experi-
ment by indicating ranges of values to be measured, regions in which to
concentrate experimental data, and sensitiveness of contributions of
various quantities to over-all accuracy.

Even though technique is an elusive matter, much can be learned by
example from practices others have found satisfactory. However, a good
portion of technique may be learned only from experience, such as certain
maintenance and manipulative aspects of equipment, or just how vigor-
ously one should tap an instrument to jar loose a source of erraticness.

1-5. Creativity and Ideas. When informed of a new idea, have you
ever wondered whether you could have thought of it? Have you ever
engaged in the intellectual pastime of trying to find a better way to
accomplish a desired objective?

The field of electrical measurements is fraught with new problems
requiring new solutions and represents an area of considerable challenge.
Many examples of old ideas that have been found useful are sprinkled
throughout this text. They reflect clear and astute thinking on the part
of others in the past. Also, certain ingenious improvements in instru-
ments and methods are discussed, some of which are difficult to better in
current practice. Many of these ideas will be applicable to new prob-
lems of the future, and it is well to analyze and understand them. Once
mastered, it only remains to recognize how they may be incorporated
into a novel situation.

Unfortunately, there is no formula for creative thinking, for production
of new ideas, or for discovering best solutions for new problems. If such
a formula existed, it would be extremely overworked. However, one may
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develop the habit of analytical thought and of formulating new ideas.
A keen, inquisitive, well-trained mind is the requisite. Little is known
about the stimulation of creative ideas. It has not even been established
that thorough comprehension of the problem is a necessary ingredient.
Yet, the demand for such ideas and the
opportunities to apply them are with-
out precedent and deserve cultivation.
To suggest a line of thought illustrat-
ing the evolution of an idea, suppose
that a method capable of high accuracy
is to be devised for measuring resist-
ance. A voltmeter-ammeter method is
ruled out immediately, because the re-
sult depends upon calibration and Fre. 1-1. Resistance measurement by
s . deflection method.
readability errors of fwo instruments.
Moreover, certain errors (which are correctable) are inherent in this
method, as described in Sec. 5-6. A second attempt might be made
using the circuit of Fig. 1-1. The battery of accurately known emf, E,
is selected to have an internal resistance, R, that is negligible compared
with Ry + X, where R; is an accurately known resistance and X is the
resistance to be determined. Moreover, the voltmeter is selected to have
a resistance, R,, that is very large compared with X. This is called a
deflection method of measurement. The voltmeter reading, V,isobtained
from the voltage-divider rule.

R,

Voltmeter

X
V—mE R<<(R1+X),Rv>>X
Solve for X.
RV
X =52 (1-1)

Thus, X may be computed from the reading, V, and the known values
E and Ri:. For example, if the reading is one-half E, then X = R,.

While this method might be useful for rough measurements of X, its
accuracy is severely limited by several factors:

1. Complete reliance is placed on the deflection of the voltmeter, and
this entails readability and calibration errors.

2. The voltmeter must draw current to produce a reading. This intro-
duces some error even if the current is very small. In other words, the
effect of R, is never entirely negligible. This error also changes for differ-
ent values of X, if the same voltmeter is used for all measurements.

3. The internal resistance of an emf is never zero, and it introduces a
small error in Eq. (1-1).

4. In practice, the value of an emf from which current is drawn is found



10 ELECTRICAL MEASUREMENT ANALYSIS [§1-5

to be an unstable quantity that depends upon time and past history of
the emf.

The required knowledge of the resistance, R, is not subject to objec-
tion. Resistance may be an accurately known and stable entity in
practice, provided that excessive current is not used.

Fic. 1-2. Resistance measurement by null method using two batteries.

After some pondering, one might conceive of the circuit in Fig. 1-2
to overcome both the first and second difficulties simultaneously. Here,
a second emf, E,, with negligible internal resistance, R, is used to pro-
vide an adjustable voltage that may be ‘“‘bucked” against the voltage
across X. The sliding contact is adjusted until the voltmeter reads zero.
Then, neither the calibration of the voltmeter nor its resistance enters
the determination of X. This is called a null method of measurement.
When the slider is adjusted for V = 0, the voltage drop across X is equal
to that across R;. Then,

XE R;E,

= gl R X), Ra (et )

Solve for X.
R,

E R,
T (1 + E) -1
Only the ratios E/E, and R2/Rs need be known accurately, but an acecu-
rate value of Ry is still required. The resistance ratio and K may be
known with good accuracy in practice. But the two emf’s, both of which
supply current, are not stable quantities, nor is their ratio. Moreover,
each of their internal resistances must be small. The method still leaves
room for improvement, but at least does not rely upon the voltmeter
calibration and does not require a high-resistance voltmeter. In fact,
any sensitive detector of direct current would serve the purpose in the
circuit of Fig. 1-2.

After deep contemplation, one might finally arrive at the remarkable

idea of modifying the arrangement in Fig. 1-2 by using the selfsame
battery for both E and E,. Then the ratio E/E, in Eq. (1-2) would

X = (1-2)
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have to be unity. The circuit in Fig. 1-3 results. When the voltmeter
reading is set to zero by adjusting the slider, the voltage across X is the
fraction X/(Ry + X) times the voltage E,, applied across By + X. The
potential difference across R;is equal to the fraction R;/(R: + R;) times
the same applied voltage, E,. Hence,

XE, _ RiE,
Ri+X R:+Rs

The applied voltage, E,, cancels, and the solution for X is

= — 1"
X=pk (1-3)

This agrees with Eq. (1-2) when E = E,. The ratio B;/R; and the value
of R; may be known with considerable accuracy. The result does not

R
R Ry
+
+ Voltmet, R TF
e oltmeter
T i |
F1c. 1-3. Resistance measurement by Fia. 1-4. Wheatstone bridge.

null method using one battery.

depend upon a knowledge of E, and its internal resistance, R, need not be
small, since it does not affect the relationship in Eq. (1-3). Moreover,
the result is independent of the voltmeter calibration as well as its resist-
ance. One must admit that this is indeed an unusual arrangement. Its
advantages and limitations are analyzed in detail in Chap. 10.

The circuit in Fig. 1-3 is the well-known Wheatstone bridge, drawn in
more conventional form in Fig. 1-4. It was first suggested by S. Hunter
Christie in 1833, but did not receive attention until Charles Wheatstone
applied it to resistance measurements in 1843. It has since become one
of the most valuable circuit configurations in the field of measurements
and is used widely in many applications. It is not restricted to resist-
ances, and the four arms may consist of a variety of different circuit ele-
ments. From one point of view, it consists of a network of circuit ele-
ments connected among four nodes in all possible ways. Whether
Christie arrived at this idea by the sequence indicated in Figs. 1-1
through 1-3 is a moot question. However, it is a plausible line of thought.
Perhaps you can think of another.
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1-6. Uncertainties and Theories. A significant feature of measure-
ments is that the “true” value of a measured quantity is never known
with absolute certainty. Physical phenomena and the laws describing
them are statistical in nature. They always display small fluctuations
that ultimately prohibit determination of the true value of a quantity.
These matters are discussed in detail in Chaps. 5 to 7.

It may be a disturbing idea to be confronted with an upper limit beyond
which invasion is impossible. Fortunately, in most gross (macroscopic)
phenomena the uncertainties are entirely negligible, and this is the case in
many engineering applications. But in pursuing a quantity more and
more closely, the “noise” limit of random fluctuations is inevitably
reached. This intrinsic characteristic of physical quantities requires an
attitude and state of mind that are appropriate to the situation. Thus,
the quantity zero is written very glibly in theoretical analysis but is non-
existent experimentally. For instance, the voltmeter reading in the
circuit of Fig. 1-3 can never be reduced exactly to zero. This aspect of
measured quantities demands increased appreciation as the quest for
higher accuracy is intensified. In the last analysis, one must rest content
with best estimates of “true’’ values, and elaborate procedures are often
necessary in arriving at the most probable value of a quantity.

The power of measurement as a decisive factor in the development of
theory deserves comment. A theory endures only so long as every meas-
urement, without exception, is consistent with that theory. Of course,
one must realize that inconsistencies are readily found with an oversimpli-
fied theory, but this does not necessarily imply that a theoretical explana-
tion is not known. As in mathematics, so in physics, only a single excep-
tion need be found to point up a fallacy. If a result is found to be
inexplicable by accepted theories, even though other phenomena are well
explained, this becomes a signal for revising the theory or qualifying it
further. The principal point is that only one case is required to produce
the upset. This represents an extreme demand on theory. The dis-
covery must, of course, be reproducible and confirmed by competent,
objective workers. It requires stringent standards, high integrity, and
complete objectivity in carrying out measurements.

1-7. Terminology and Notation. Terminology regarding several items
in this text is not uniform in electrical literature. Three of these items
are particularly prominent and might be bothersome without a brief
explanation.

a. Control. The term “control” is used throughout this book to
describe a three-terminal resistor in which one terminal is an independ-
ently adjustable sliding contact. A control was used in the resistance-
measurement examples of Figs. 1-2 and 1-3. This three-terminal device
is often referred to incorrectly as a potentiometer. However, potentiom-




§1-71 INTRODUCTION 13

eters are more elaborate arrangements of circuit elements and generators
(both d-¢ and a-c) used for precision measurement of potential difference;
Alternatively, the three-terminal resistor is sometimes called a voltage
divider or a potential divider. This terminology does not distinguish
between adjustable and nonadjustable arrangements. Thus, two fixed
resistors in series, with a fixed tap at their junction, comprise a potential
divider, but this is not a control, as the term is used in this text. A
rheostat is a two-terminal variable resistor. When one fixed terminal of a
control is unused, it may be called a rheostat.

b. Current. Conduction current is an instantaneous scalar quantity
defined as the net (average) charge passing a given cross section of a
region per unit time. The charge flows through the cross section, and the
current is a number describing the rate of flow of charge. It should be
clear that the charge flows, not the current. Yet much of the literature
refers incorrectly to the “flow” of current. But current is the flow, and,
in effect, such a statement literally implies that the flow flows. In this
text, use of the term current flow is avoided.

c. Voltage. Potential difference between two points is an instantane-
ous scalar quantity defined as the work done per unit charge in moving
the charge from one point to the other. The term voltage, so frequently
found in the electrical literature, has a less precise meaning. Indeed,
it has become an increasingly vague term because of its varied uses.
Despite this difficulty, the term voltage as used here is synonymous with
potential difference. This is a matter of economy of words that avoids
repetitious reference to the two points between which the potential differ-
ence exists. No confusion should result since it is usually clear from
context which two points are being considered when the term voltage is
used.

An attempt has been made to use accepted notation for all quantities,
and to use symbols that are clear and unambiguous. It is impossible,
without creating new and strange symbols, or using annoying subscripts,
to have each symbol represent a single quantity exclusively. A complete
listing of symbols is considered unnecessary, but several over-all guides
deserve mention.

In general, all complex quantities (representing steady-state, single-
frequency currents, voltages, impedances, admittances, and so forth)
have been set in boldface type. Similarly, all three-dimensional vector
quantities are set in boldface type. No ambiguity should result from use
of boldface type for these distinctly different items, since vectors and
complex quantities do not appear together in this text. It is extremely
important to distinguish clearly between these quantities and scalars that
may be related to them but which are by no means interchangeable with
them.
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Instantaneous quantities that are functions of time are represented by
lower-case letters. Steady quantities such as average and peak values
are signified by capital letters. Although the same symbol may be used
in different portions of the text for different quantities, the intent should
be clear from context. For example, p represents instantaneous power in
Chap. 2 but is used for probability in Chap. 6; W designates work in
Chap. 2 but signifies the width of a galvanometer coil in Chap. 3. Sev-
eral symbols are used exclusively to stand for exactly the same quan-
tity throughout the text. These are mostly well-established conven-
tions, including ¢ = 2.7183, = = 3.1416, ¢ = instantaneous charge, and
® = angular frequency in radians per second. The symbol 6 has been
reserved for the angular deflection of a meter movement. In addition,
a consistent notation has been used for logarithms: In = logarithm to the
base ¢; log = logarithm to the base 10.

1-8. Dimensional Checks and Conversion of Units. Dimensional
analysis is a general method valuable in exploring limitations and forms
of relationships among variables in a physical system. It is sometimes
called the principle of similitude. Two relatively minor offshoots of this
method are highly useful in routine analysis. These are (1) checking
dimensions of equations, and (2) changing from one set of units to
another.

Any single functional elationship among physical quantities must
possess dimensional homogeneity; that is, each term in the equation must
have the same dimensions. It follows that, in addition or subtraction of
two terms representing physical quantities, both terms must have the
same dimensions. This property of equations provides a rule that often
saves analysis time in developing theoretical formulas. Simple mistakes
in algebraic or other manipulations may often be immediately detected
upon applying a dimensional homogeneity check. Moreover, the par-
ticular term in error is usually identifiable and facilitates tracing the error.

For example, suppose in the course of analysis, one portion of an equa-
tion that is developed is

R,
R

R;R,

+ 2 + VRS + R
[}

where the R symbols represent resistance in ohms. This is obviously in
error since the first term is dimensionless while all other terms have the
dimension ohms. Probably a resistance term multiplying the R/ R, was
dropped inadvertently at an earlier stage. Even so obvious a check as
this often saves much labor in the course of working toward a final result.
One should continually ask whether expressions are dimensionally
homogeneous. 1t is one of the simplest and most revealing aspects of an
equation to check, and it discloses errors in a surprising number of cases.
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Another use of dimensional analysis is particularly valuable because it
alleviates difficulties with problems involving change of units, which
sometimes cause a tangle in thinking. In these applications, the rule for
changing from one set of units to another is simply to write out the known
dimensional formulas among the quantities involved. To illustrate, take
the case of converting angular velocity of 100 radians per min to degrees
per second. Since 1 radian contains approximately 57.3 deg, and 1 min
contains 60 sec, it follows that

100 24 _ 199 573 deg _ o o deg
min 60 sec sec

In this approach, each unit is replaced by an equivalent number of differ-
ent units. In effect, the unwanted units are canceled, thus
Tad | deg 1 mimr deg
IOOJ—m—Tr X 57.3§ix 60 sec 95.5 o
This method is general and straightforward. Note that it is completely
unnecessary, and usually undesirable, to express all units first in terms of
fundamental units.

The same method may be applied to determine equivalent dimensions
of a given quantity. This may be accomplished with a comparatively
few elementary physical formulas that contain the units in question.
For example, to find the equivalent dimensions of

L _ henry
R~ ohm
resort to Ohm’s law and the relationship for self-inductance:
. di
v = Ri v =1 57

Clearly, R has the dimensions volt per ampere, and L has dimensions
volt-second per ampere. Hence,

henry  volt-sec 1 — sec
ohm ~ amp volt/amp

1-9. Some Omitted Topics. Any book in a field as polymorphic as
electrical measurements cannot cover all phases of the subject. How-
ever, this text is more confined than most so far as topical coverage is con-
cerned. This results from placing emphasis on concepts and analysis.
It should be understood that many topics found in traditional descrip-
tions of the subject are either omitted entirely or merely mentioned in
passing. There is ample literature available on these topics, should the
student wish to explore them.
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Some over-all aspects that are slighted include details and construction
of measurement equipment and of components that form a part of this
equipment. Thus, design and construction of standard (precision)
resistors, shielding in a-¢ bridges, standard-cell information, and other
such matters are excluded. Commercial apparatus and its manipulative
features are not presented. Only a few basic types of instruments are
analyzed, and little mention is made of many other types that are widely
used. While certain applications of instruments and methods are
included to make analyses meaningful, no attempt whatever has been
made to describe many applications prevalent in this field. In general,
electronic equipment and principles are not included, nor are high-fre-
quency aspects of measurements. Stray effects such as lead inductance,
contact difference of potential, stray capacitance, and others, sometimes
important in practice, are not investigated.

Some specific topics that are omitted which have appeared in many
texts of the past are magnetic measurements, instrument transformers,
energy measurements, polyphase circuits and measurements. Moreover,
such traditional devices as ballistic galvanometers and a-c potentiometers
are not analyzed.

It would appear that far more topics have been omitted than included,
and this is indeed the case. However, it is hoped that with careful selec-
tion of material, the principal concepts and ideas useful in the field of
measurement, as well as in related engineering fields, have been retained.



CHAPTER 2

REVIEW OF LINEAR CIRCUIT ANALYSIS

A synopsis of basic circuit concepts utilized in this text is presented for
ready reference, and to specify circuit terminology and conventions to be
used. It is not intended to be more than a condensed review and brief
summary of material to which the student has probably been previously
exposed. Ramifications of the highly developed subject of linear circuit
analysis are omitted. A knowledge of differential equations, complex
algebra, and use of determinants in solving simultaneous equations is
assumed.

2-1. Definitions. Length, mass, time, and charge are taken as funda-
mental (undefinable) quantities. Their units in the mks system are the
meter, kilogram, second, and coulomb, respectively. Force and work
are mechanical quantities defined in terms of length, mass, and time.
Their units in the mks system are newton and joule, respectively. The
three primary scalar electrical quantities of circuit theory are defined
below.

Conduction current, 7, is an instantaneous scalar quantity defined as the
net (average) charge, dg, passing a given cross section of a circuit in
time dt.

1= Z—tq amp (coulomb per sec)

Potential difference, v, between two points is an instantaneous scalar
quantity defined as the work, dW, done on a charge, dg, in moving it from
one point to the other.

v = Z—IZ volt (joule per coulomb)
The terms potential difference and voltage are used synonymously in this
text.
Electric power, p, is an instantaneous scalar quantity defined as the
work, dW, done in a time d¢, in carrying a charge through the afore-
mentioned potential difference.

_aw _dWdq _ vi  watt (joule per sec)

17

dt — dq dt
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Power is also equal to the product vz, as indicated, where v is the potential
difference between the points that ¢ enters and leaves.
The average value of a function of time, f(¢), between ¢; and ¢, is defined

by

1 t2
F,, = t -1
N @1)
and may be applied to ¢, v, or p.

The root-mean-square (rms) value of a function of time, f(t), between
time ¢, and i, is defined by

P = \E ” / MO (2-2)

and may be applied to 7 or v, but rms power is not a useful definition.

If f(¢) = f(t + T), then f(?) is a periodic function of period T. If the
interval ¢, — f; in the above definitions is not specified, and if f(?) is a
periodic function, then the interval is usually implied to be one period.

9-9. Kirchhoff’s Laws. The two experimental laws of Kirchhoff are
cornerstones of circuit theory. Xirchhoff’s current law, tied in with
conservation of charge, states that the sum of all currents entering any
node (or junction) is equal to zero.

i, = 0 at any node, with every ¢ included

Kirchhoff’s voltage law, tied in with conservation of energy (or work),
states that the sum of all voltages around any closed mesh (or loop) is
Zero.

v, = 0 around any closed mesh, with every v, included

In both laws, account must be taken of the algebraic signs of the currents
and voltages, and a consistent sign convention used in any given instance.

9-3. Two-terminal Circuit Elements. Practical electrical devices may
be approximated in varying degree by the idealized linear elements, or
combinations of elements, defined below. The currents and voltages
referred to in the definitions pertain in all cases to the two terminals of
the element, as illustrated in Fig. 2-1.

A constant resistance is a two-terminal device in which the ratio of volt-
age to current is constant.

v = Ri

The resistance, R, has the dimension ohm = volt per ampere. Since
i = dg/dt, this may also be written

1
q=R—/vdt—G/vdt

where G = 1/R is the conductance of the resistance R.
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A constant capacitance is a two-terminal device in which the ratio of
charge to voltage is constant.
g=Cv
The capacitance, C, has the dimension farad = coulomb per volt. Using

i = dg/dt, this may also be written

. dv _ 1.
1,—0% or v—CY/zdt

A constant inductance is a two-terminal device in which the ratio of
voltage to time derivative of current is constant.

U=L%

The self-inductance, L, has the dimension henry = volt-second per
ampere. This also may be written

i=%fvdt

A constant-voltage source (or generator) is a two-terminal device in
which v(¢) = e(f) is independent of the current, 7(t), passing through the

L

T e ]

Fic. 2-1. Two-terminal circuit elements.

device. The arrow alongside the voltage generator in Fig. 2-1 indicates
the direction of the voltage rise and is directed from minus to plus.

A constant-current source (or generator) is a two-terminal device in
which i(f) is independent of the voltage, v(?), across the device. The
arrow alongside the current generator in Fig. 2-1 indicates the direction of
flow of positive charge.

2-4. Network Equations and Solutions. Practical electric circuits may
be approximated in varying degree by interconnected two-terminal cir-



20 ELECTRICAL MEASUREMENT ANALYSIS [§2-4

cuit elements, or combinations thereof. Network equations are differ-
ential equations that interrelate instantaneous charge, current, and volt-
age. The equations are linear with constant coeflicients when constant,
bilateral, two-terminal elements only appear in the network.

Network equations arise from the application of Kirchhoff’s two laws,
in combination with the definitions of two-terminal devices. Tor
example, with the three elements of Fig. 2-2a connected in series with a

L R C
L7 T
el T iy(8)) it Tc R Ly
(a) (b)

Fia. 2-2. Dual circuits.

constant-voltage source, e(t), Kirchhoff’s current law reveals that each
element must carry the same current, 71(t). The voltage law yields the
equation

di,

LG

+ RBir+ f iy dt = e(t) 2-3)
For three elements connected in shunt with a constant-current source,
i(t), Kirchhoff’s voltage law shows that each element experiences the same
voltage, v1(t). Application of the current law to the circuit of Fig. 2-2b
results in

dvl

Car

+le+%/v1dt = i(t)

These two circuits are duals, since their circuit equations may be
obtained from each other by interchanging C and L, ¢ and R, L and C,
v1 and 41, and ¢(f) and e(t). Duality is a useful concept that helps to
unify principles of circuit equations; it may also be a practical timesaver
in solving circuit problems.

No matter how complicated the interconnection of any number of two-
terminal elements, Kirchhoff’s laws may be applied to obtain the network
equations. In general, these are simultaneous equations among the
voltages and currents in all elements. If all the elements are known and
all the boundary conditions are specified (such as initial values of charges
and currents for all elements), then these equations may always be solved
for the currents and voltages of each element. Because the equations
become complicated and numerous for a complex array of interconnected
elements, special techniques for writing the equations are used. Mesh
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equations, or the dual node equations, may be utilized to systematize and
organize the equations and their manipulation. These equations stem
basically from Kirchhoff’s laws.

The solution of network equations for each dependent current or volt-
age generally consists of a transient term

and a steady-state term. For example, in ANA A
the simple circuit of Fig. 2-3, let Q, repre- R
sent the charge on C before the switch is + +@Q

—FE °\
closed. The constant-voltage generator, I C =

E,isnot a function of time. If the switch is
closed at time ¢ = 0, Kirchhoff’s current
law indicates that the current, 1 = dq/dt,
in each element is the same for ¢ = 0. The voltage law yields, for
t = 0, the equation

F1a. 2-3. Charging capacitor.

=E g=Qoatt=0

The complete solution for ¢ is
g = CE — (CE — Qo)et/RC t=0 (2-4)

The steady-state term is CE. The remaining portion of the solution is
the transient term, which becomes negligible compared with CE as
t— .

In more elaborate networks, there may be considerable complexity in
determining solutions of simultaneous differential equations, especially if
voltage and current generators are not simple functions of time. Tech-
niques such as the Laplace transform may be applied to obtain the solu-
tion of such simultaneous equations.

2-5. Solutions in the Steady Sinusoidal State. The steady-state solu-
tion (particular integral) of an nth-order linear differential equation with
constant coefficients is easily found if the generators are sinusoidal func-
tions of time. Use of complex quantities to represent, the steady-state
voltages or currents enables the differential equations to be transformed
into algebraic equations. Only the steady-state solution is obtained, so
that boundary (initial) conditions on the variables do not enter and need
not be known.

The basis of the ¢t method, as it is sometimes called, is outlined here
for a second-order equation. The same reasoning may be used to extend
the results to higher-order equations, to sets of simultaneous equations,
and by linear superposition to any number of sinusoidal driving functions.
In the latter case, it is especially important to recognize that the complex
quantities are functions of frequency; hence, a different set of complex
numbers is generally required for each different frequency.
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Consider the pair of second-order differential equations

dz? d

adT;c+b£+cx=Acos(wt+¢) (2-5)
2.

a%+b%+cy=ﬁlsin(wt+¢) (2-6)

The constants a, b, ¢, 4, », and ¢ are the same in these two equations.
The steady-state solution for z or y, which may be instantaneous currents
or voltages in a given network, is obtainable from a single complex num-
ber without the need of solving the differential equation directly. To
demonstrate this, multiply Eq. (2-6) by j = 4/—1 and add the two
equations.

Pz d(y) de | dGiy) .
a[dtz +“@T]+b['ﬁ+w + e(x + jy)

= Alcos (wt + ¢) + jsin («t + )]
Define u = z + jy. Then this equation becomes

L&

de?
Either z or y may be obtained from the complex number u, appearing in
this equation, by the relations

+ 00 4 o= A @-7)

z = Re {u} y = Im {u}

where Re signifies the real part, and Im signifies the imaginary part.
This is a very practical means for obtaining « or y because it is easy to
find the u that satisfies Eq. (2-7). The complex number u, which is a
function of both frequency and time, that will satisfy Eq. (2-7) is known
to be in the form

u = Ueiet U = Ue?

where the magnitude, U, and the angle, ¢, of U are not functions of time.
Substitute u into Eq. (2-7) and carry out the time differentiations.
[a(jw)?U + b(jw)U + Ul = Adet
Cancellation of ¢« leads to an algebraic equation from which U and ¢
may be determined.
U(c — aw? + jwb) = Ad¢ = A
The magnitude and angle of U are

A

_ wb
U= = e + @

¢ = ¢ — tan™?
¢ — aw?




§2-5] LINEAR CIRCUIT ANALYSIS 23

The over-all scheme is complete. For example, if Eq. (2-5) is given
and the steady-state time function, z, is desired, it is necessary only to
find U. This is readily accomplished by replacing the differential equa-
tion by its corresponding complex equation. Then the algebraic equa-
tion for U follows. Multiplying the known U by €, and extracting the
real part, yields z.

z = Re {u} = Re {Ue«t}
A

" V(@ = ad? + (b

To illustrate with a first-order electrical example, find the steady-state
current in the inductive circuit of
Fig. 2-4. The differential equation

R
for the current is T AvAYAY
di . T
Lfi—t 4+ Ri = E cos (wt + ¢) E cos (wt+¢) T ; L

The complex differential equation
that replaces, but is not identical to, Fie. 2-4. Inductive circuit.
this equation is

¢ — aw?

cos <wt + ¢ — tan—! cwb )

L% + Ri = Eeltt+®

The complex quantity i, replacing the actual current, i, is known to be in
the form
i = Jewt = Jeiveiot

The complex current, I, satisfies the algebraic equation in which e hag
been canceled.
L(jw)I + RI = Eeé¢ = E

Thus, I is determined.
_ EGM’ _ E . —1 wL
TRt T URrer ‘TR
Since the instantaneous voltage applied to the circuit is given by

e(!) = Re {E¢t} = Re {Ee“+®)} = E cos (wt + ¢)
then the steady-state solution for the instantaneous current must be
given by the real part of i.

I

. . ) E wl
2~=Re 1 =Re Ieiwt = —— C t — tan—! =
i e = e °S<‘° T tan R)
There is, of course, nothing unfamiliar about this solution, but the basis
upon which it is obtained is important. In actual problems, all these
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steps are not necessary, once the method is understood. Usually, the
algebraic equation of the complex current is written immediately and
solved for the unknown complex current, I. There is often no interest in
returning to the time domain.

If the generator voltage were E sin (wt + ¢) in the foregoing example,
there would be no complications. In this case, the instantaneous voltage
is given most conveniently by

e() = Im {Ee*t} = Im {Eé@®} = Esin (ot + ¢)

Therefore, the instantaneous current is given by the imaginary part of
Teiet,

This summary provides a rational basis for the use of complex quan-
tities for networks in the steady alternating state. The method is not
restricted to circuit problems. It enables a clear distinction to be made
between quantities that are real and those that are complex and between
those that are functions of time and those that are not. While the
geometric representation of complex quantities in the complex plane by
means of phasors may be helpful in visualizing certain relationships, it is
sometimes a more cumbersome view. Complex quantities may be
handled entirely by rules of algebra, and the geometric representation is
not required.

2-6. Impedance and Admittance. If all constant-voltage and con-
stant-current sources in a network consisting of constant two-terminal
elements are sinusoidal and have the same frequency, and if all transients
have died out to a negligible level, the network is then in the steady
sinusoidal state. All voltages, v(t), and all currents, i(f), throughout the
network are sinusoidal and of the same frequency. Under these condi-
tions, they may be represented by complex quantities, since the only dis-
tinguishing features of a sine wave are its amplitude and phase.

v(t) = Re {Veet] = Re {Ve#et} = V cos (ol + 1)
i(t) = Re {Ie#t} = Re {Ieitet} = I cos (wf + ¢2)

The complex voltage V and the complex current 1 are not functions of
time. They have magnitudes V and I and phase angles ¢1 and ¢,
respectively. These complex numbers represent peak values of the
instantaneous quantities, and this convention will be used throughout
(rather than including the factor /2 as is done in some treatments).
With ¢, and ¢, arbitrary, these are general steady-state representations.
However, the instantaneous quantities may also be represented, if desired,
in terms of complex quantities by replacing “Re” by “Im’ and “cos”
by ‘“sin.”

Impedance and admittance are single-frequency concepts used to
describe passive circuit elements in the steady sinusoidal state. If a
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two-terminal device displays a constant ratio of complex voltage to com-
plex current, then the complex impedance of the device is defined by Z.
\ 11
Z=1 Y=z-v
The complex admittance, Y, is the reciprocal of Z. Note that Z and Y
are, by definition, independent of the voltages and currents. However,
they are generally functions of frequency.
In the steady sinusoidal state, it may be proved that Kirchhofi’s two
laws hold for complex currents and voltages (see Prob. 2-5).

2ZI, = 0 at any node, with every I included

ZV; = 0 around any closed mesh, with every V; included (2-8)

It then follows from the definition of impedance and admittance that,
for a constant resistance, K, the impedance is Z = R, and the admittance
isY = 1/R. For a constant capacitance, C, the impedance is Z = 1/jwC
and the admittance is Y = jwC. TFor a constant self-inductance, L, the
impedance is Z = joL and the admittance is Y = 1/jwl.. Moreover,
application of Kirchhoff’s laws shows that for N series-connected, two-
terminal elements, the impedance of the series combination is

N
z8=zzk=z1+zz+---+zN (2-9)

k=1

and the series admittance is given by

Similarly, for N parallel-connected two-terminal elements, the impedance
of the parallel combination is given by

N
1 1
27—7 nt ot
and the parallel admittance is
b= ) Y=Y+ Yot - + Yy (2-10)

In general, impedance and admittance may consist of both real and
imaginary parts. Thus,
Z =Zé¢* = R 4+ ;X
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where the magnitude and angle of Z in terms of its resistance, R, and its
reactance, X, are

Z=VEETX o=t

Similarlj, for the admittance
Y=Yef =G + 4B

where the magnitude and angle of Y in terms of its conductance, G, and
its susceptance, B, are

Y = VG + B
Isin (wt+¢)
B = tan—lg

To illustrate the application of
some of these relations, an expres-
sion will be found for the steady-state voltage across the current generator
of Fig. 2-5. The admittance of the two parallel elements is

1+ joRC _ /T + @RO? ,
R R

where tan 8 = wRC. The complex voltage across the current generator,
and across R or C, is

V = I_ Rle = RI & 6—B)
Y /1 + RC)?ef +/1+ (wRC)?

The instantaneous current is related to I by

i(f) = Tm {Ié=t} = T sin (ot + @)

F1a. 2-5. Capacitive circuit.

1 .

Therefore, the instantaneous voltage is

- oy =BT g — tan—!
v() = Im {Veot} Vi T GRO® sin (ot + ¢ — tan—! wRC)

2-7. Voltage Dividing and Current Splitting. The occasion arises so
frequently to use two special cases, really contained in the preceding
section, that separate proofs are given here for emphasis. The voltage-
dividing and current-splitting rules, proved below for the steady sinu-
soidal state, are applied repeatedly throughout the text.

a. Voltage-dividing Rule. The complex voltage across impedance 1 of
two series impedances is equal to the voltage across the pair of imped-
ances times a reduction factor. The reduction factor is equal to the ratio
of impedance 1 to the sum of the two impedances.
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To prove this rule, let a complex voltage, V, be applied to the two
series-connected impedances Z; and Z, of Fig. 2-6. Suppose V;, the volt-
age across Zi, is the desired voltage. The
complex current through the series combina- —
tion is

=v__V
B Zs Zl + Z2 v
The voltage V; is Z, times this current.
— p— Zl -
Vl—le—mV (2-11)

This proves the rule. The reduction factor Fic. 2-6. Voltage divider.
iS Zl/(Zl + Zz)

b. Current-splitting Rule. The complex current in impedance 1 of two
shunt impedances is equal to the current entering their junction times a
splitting factor. The splitting factor is equal to the ratio of the “‘other”
impedance to the sum of the two impedances.

To prove this rule, let a complex current, I, enter the junction of two
parallel-connected impedances, Z; and Z,, of Fig. 2-7. Suppose I, the
current through Z,, is the desired current. The complex voltage across
the parallel combination is

Z,Z,

V=2l=7"771

The current I, is this voltage divided by Z;.

\' Z,

L=z.~"z.7z

I (2-12)
This proves the rule. The splitting factor is Z,/(Z, + Z.).

Both of these rules should be memorized. They are actually duals, but
this has been clouded by the use of imped-

I I ances in both cases. Replace the imped-
ances of the current-splitting rule by
Z Z . admittances, and the dual nature of the

<

two rules becomes clear. Then in volt-
age dividing, the ratio of voltages is equal
to the ratio of impedances across which
the voltages appear;in current splitting, the ratio of the currents is equal to
the ratio of the admittances through which the currents pass. Theimped-
ance form of the current-splitting rule is preferred here because the shunt

elements are specified as impedances in most of the measurement circuits
encountered.

F1c. 2-7. Current splitter.
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2-8. Average Power. In the steady sinusoidal state, the instantane-
ous power is
p=0vi =1V cos (wt + é1)I cos (wt + ¢2)

With the trigonometric identity
2cosxcosy = cos (x — y) + cos (x + y)

the instantaneous power becomes

I
p = I_;_ [cos (¢1 — ¢2) + cos (2wt + ¢1 + ¢2)]

The average power over the period T = 2m/w is obtained from Eq. (2-1).

P 1 u+T d
av_-q_‘l</; p t

where #; is arbitrary and is usually taken as zero. The first term of p is
constant, and the integral of the second term of p over the period iszero.
Hence,

P = 7L cos (61— 62) = VemLm 005 (61— ¢9)  (2-13)

The cosine of the phase difference between v and 7 is the power factor.
The average power, which is real, may be formulated in terms of com-
plex quantities. Consider the complex voltage and current

V = Ve I = Jeide
The conjugate of a complex number, signified by an asterisk, is defined by
replacing j by minus j. Therefore,
VI* = Veor]eid: = V [l (r—92)
Evidently, this is related to P,, by

P, — %Re (VI*) (2-14)

If V and I are the complex voltage and current associated with an imped-
ance Z = V/I, then

I*Re {Z} = %PR

DO —

P, = %Re (VI*] = LRe (ZII*} =

DO =

where R is the real part of Z.

2-9. Mesh Equations. Mesh or node differential equations may be
formulated for electric circuits on an instantaneous basis. However, this
discussion will be confined to the steady sinusoidal state and to linear,
bilateral networks containing constant generators. In this case, the net-
work equations, in terms of complex voltages and currents, become
simultaneous algebraic equations that may be solved by use of determi-
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nants. Among the virtues of mesh or node equations are the reduction
of the analysis to a systematic routine procedure and the provision of a
general framework permitting rapid formulation of the equations while
minimizing possibilities for algebraic errors.

An advocated method of selecting mesh currents is to choose all of them
positive in the same direction in successive adjacent meshes, including one

ll 7 — ]l Z3 II

EbT

Fic. 2-8. Circuit with two independent mesh currents.

branch previously traversed, until all branches have been covered. If
only one mesh current in a particular branch is desired, the circuit may be
redrawn, if necessary, so that this branch becomes an outer branch, rather
than assigning mesh currents in haphazard fashion to achieve the same
result.

An example of a circuit containing two independent mesh currents
will be presented before stating the general formulation. In the circuit
of Fig. 2-8, two clockwise mesh currents, I, and I,, are selected in adjacent
meshes. It is easily verified that Kirchhoff’s current law is automatically
satisfied by these currents at every node. Kirchhoff’s voltage law yields,
for meshes 1 and 2, respectively,

LZ, + 0. — I,)Z, = E, — E,
I —I)Zy 4+ 1,Z; = E,

Group all terms containing the same mesh currents to obtain the standard
form of the mesh equations.

(Zi +Zy)1, — Z,JJ, = E, — E,
—ZIh + (Z: + Z;)I, = E,

The mesh determinant is

Z,+ 2, —Z,

2. 7, 4 7 = e+ ZiZy + ZZs

A:

The mesh currents are given by Cramer’s rule.
E,— E —Z; Z,+Z, E.—E,
E, Zy+ Z; L — —~Z, E,
A 2 A

I, =
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For an n-mesh network, it is intrinsic to the nature of mesh currents
that Kirchhoff’s current law is always automatically satisfied. With all
mesh currents taken positive in the same direction, the following n volt-
age equations result when Kirchhoff’s voltage law is applied and all
terms containing the same mesh currents are collected.

Z,I; — Z1212 — - = Zyl, = E;
-7 Zody — « » + — Zp 1, =

by # e =7 Bl = B (2-15)
—ZnIII - Zn2I2 — s+ ZnnIn = En

where I, is the mesh current in the 7th mesh; r =1,2,3, . . . ,n
Z.. is the total impedance common to mesh r (self-impedance)
Z., is the total impedance common to both meshes 7 and k (mutual
impedance)
E, is the sum of all voltage rises owing to generators in mesh r,
taken positive in the same direction as I,
The mesh determinant is

Z; —Zyy -t —Zln
a=|Tn Bmon e
“"an _Zﬂ2 st Znn

and is symmetrical about the main diagonal of self-impedances, since
Z.. = Zi, for bilateral impedances. A typical mesh current, say I, is
obtained by inserting the column of generators, appearing on the right

of the mesh equations, into the kth col-

I umn of A and dividing by A.
— _ApE; | AxE, L A,
. L = A + A + + A
i 2 (2-16)
L T Y, y;| Wwhere Ay is the cofactor of the rth row,
|_’_. kth column of A; 7 =1,2,3, . .. ,n.
2-10. Node Equations. An advo-

o . cated method of selecting node voltages
Fra. 2-9. Circuit with two inde- ;4 ¢ assjon all nodes positive with re-
pendent node voltages. .

spect to an arbitrary reference node.
The potential of the reference node is inconsequential and may for con-
venience be taken as zero. An example of a circuit with two independent
node voltages will be presented before summarizing the general formu-
lation. In the circuit of Fig. 2-9, two node voltages, Vi and Vs, are
assigned as voltage drops from nodes 1 and 2 to reference node 0. It
is easily verified that Kirchhoff’s voltage law is satisfied by these node
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voltages around every mesh. Kirchhoff’s current law yields, for nodes 1
and 2, respectively, ‘
V1Y1 + (Vl - Vz)Yz = Ia - Ib
V.Y; + (Vz - Vl)Y2 =1y

Group all terms containing the same node voltages to obtain the standard
form of the node equations.

Y14+ YY) Vi =Y.V =1L -1
=Y.V, + Y4+ Y,)Ve =1,

The node determinant is

Y.+Y. Y.

-y, Yo+ Y| = Y.Y: 4 Y.Y; 4 Y.Y;

o

The node voltages are given by Cramer’s rule.
L -1 -Y, Yi:4+Y:, L-1T

L Y.+Y; S £ I,
D 2 D

Vi =

For a network with » independent node voltages, it is intrinsic to the
nature of node voltages that Kirchhoff’s voltage law is always auto-
matically satisfied. With all node voltages taken as voltage rises from
the reference node, the following n current equations result when Kirch-
hoff’s current law is applied and all terms containing the same node volt-
ages are collected.

Y11V1 - Y12V2 - - Yann = I1
—YuVi 4+ YouVy — - - - — Y., V, =1,

—'Ynlvl - Y'n2v2 - + Ynnvn = In

where V., is the voltage drop from node r to the reference node; r = 1, 2,
3, ...,n
Y. is the total admittance attached to node r (self-admittance)
Y,: is the total admittance between nodes 7 and k (mutual admit-
tance)
I. is the sum of all currents owing to generators attached to node r,
taken positive in the direction toward node r
The node determinant is

Y11 —Y12 _Yln
—Yy Yoo - - -Y.,

—Yu =Y - -- Yon
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and is symmetrical about the main diagonal of self-admittances, since
Y,. = Y., for bilateral admittances. A typical node voltage, say Vi, is
obtained by inserting the column of generators, appearing on the right
of the node equations, into the kth column of D, and dividing by D.

Dyl I nikln )
v, = 31+D]2;2+...+2D’°i (2-17)

where D, is the cofactor of the rth row, kth column of D; r = 1, 2,
3, ...,n.

Either mesh or node equations may be written for a given network,
and both sets of equations lead to identical solutions for currents and
voltages in every branch. Note that the mesh and node determinants
are unequal, A % D. The choice between the two methods is a matter
of convenience. The method selected is often the one that requires fewer
equations.

T

ET -7 T
T -

Fia. 2-10. Equivalent generators.

Since mesh equations contain constant-voltage generators and node
equations contain constant-current generators, it is necessary to have a
means for converting one type of generator to the other. This is accom-
plished by the equivalence indicated in Fig. 2-10. The output-terminal
characteristics of a constant-voltage generator, E, in series with an imped-
ance Z, are indistinguishable from those of a constant-current generator
I = E/Z shunted by an impedance Z. The no-load output voltage of
each circuit is E, the short-circuit output current is E/Z in both cases,
and the current drawn from the output terminals by an arbitrary imped-
ance, Z,, connected across the output terminals is, in both cases, equal to
E/(Z + Zy).

2-11. Driving Point and Transfer Immittance. The ratios of cofactors
to network determinants appearing in the mesh-current solutions, I, and
in the node-voltage solutions, Vi, are important quantities that charac-
terize the network. The reciprocals of these ratios are given special
names. Bach ratio has a physical network interpretation.

The driving-point impedance of mesh k is defined by

A

Zyk =
Ayx
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If mesh k is the input or output mesh of the network, z is often termed
the input impedance, and is the driving-point impedance ‘‘looking into”’
the mesh in question. It will be shown in Sec. 2-15, for the case of a
network with an output mesh n, that z.., the input or driving-point
impedance of mesh n, is equal to the Thévenin equivalent impedance.
The physical interpretation of z; resides in Eq. (2-16). Suppose all
generators are zero, and then a single generator, E;, is applied in series
with an outer branch of mesh k. (The stipulation of an outer branch
is not restrictive since the network may be redrawn to accomplish this
without altering it electrically.) Then, from Eq. (2-16), zi is the ratio
of the applied generator voltage, Ex, to the current, I, drawn from this
generator, since all other terms in I, are zero.
The transfer impedance between mesh r and mesh k is defined by

A
A rk

Zyy =

The physical significance of zy, is also evident from Eq. (2-16). Suppose
all generators are zero and then a single generator, E,, is inserted into an
outer branch of mesh 7. Then z;, is the ratio of the voltage E,, applied in
mesh r, to the current, I, that it produces in mesh k.

The transfer impedances z;, and z, are equal because the mutual
impedances Z;, and Z,; are equal for bilateral elements. This may be
demonstrated by interchanging rows and columns of the cofactor, in
accordance with rules of manipulation of determinants. For instance,
in the case of zi2 = A/Ay, the cofactor A, is given by striking out the
second row and first column of A.

—Zy, —le s —Zy,
—Z32 Zss e —an
An = — | —Zyp —Zyz - —Ls
_Zn2 _Zn3 ot Znn

Replace each mutual impedance Z;, by Z,,, and interchange corresponding
rows and columns. These maneuvers do not change the value of Ay,
which then becomes

—Zyy —Zss —Zy - —Zo
N e A
_an _Zn3 _Zn4 ot Znn

This result is identically the same as A, as may be seen by striking
the first row and second column of A. Hence, it has been proved that
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Ag = Ajpg, from which it follows that z;» = zs:. By extension, it may be
seen that z;, = zx, 7 # k.
Driving-point and transfer admittances are defined in similar fashion.

_D _D
Yix D Yer D

For bilateral elements, Y, = Yi,. Hence, it follows that D,x = Dx,, from
which yi, = Vo, r # k.

2-12. Equivalent Networks. A definition of equivalence of two net-
works that serves in both steady-state and transient cases, and is unre-
strictive regarding the number of network terminals, follows:

Two networks are equivalent if a set of voltages (or currents) is applied to
corresponding terminals of the two networks and the resulting currents (or
voltages) at corresponding terminals of the two networks are identical.

Several important special cases may be deduced from this definition
for passive, linear, bilateral networks operating in the steady sinusoidal
state. For example, networks with only two terminals are equivalent if
their input impedances at the two terminals are identical. Thus, a two-
terminal network, no matter how complicated internally, may be repre-
sented by a single impedance at any given frequency.

An important class of networks is called three-terminal networks, or
networks with two pairs of terminals (see Fig. 2-11). These networks

1 2 1 2
~— | —e o—l Z, Z, |—0
Passive linear
bilateral Z3
network
1 "
3

Frc. 2-11. Three-terminal networks.

have a pair of input and output terminals, but are three-terminal net-
works by virtue of the short circuit joining one of the input and output
terminals. Application of the definition of equivalence reveals that, no
matter how complicated the three-terminal network, it is characterized
by only three independent complex quantities. These are the driving-
point impedances at the input and output terminal pairs, and the two
transfer impedances between input and output meshes, which are equal.
This means that only three independent impedances are required to con-
struct an equivalent network, and the two possible configurations are
given in Fig. 2-11. These are the familiar T and Pi networks. It is
only necessary that the driving-point and transfer impedances of the T
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and Pi networks be the same as those of the original network to guarantee
equivalence in accordance with the definition.

As an application of the definition of equivalence to instantaneous
quantities, consider the case of a three-terminal network containing
mutual inductance, shown in Fig. 2-12. Constant mutual inductance, M,
between two magnetically coupled circuits is defined as the ratio of volt-

Ci2
Il
H

. M
13 i3 Eiz V32
L.
3

Ly 2 l
(a)

F1a. 2-12. Equivalent circuit for two coupled coils.

By
e AYAY,

 ——
4

age induced in one circuit by the time derivative of the current in the

other circuit.

d’L2

= M1, % = m, % d“

Myp=Mu=M

The algebraic sign of M may be positive or negative, depending upon the
directions of magnetic flux and the relative physical orientation of the
two coils.

Suppose instantaneous currents, ; and 72, are applied to the input and
output terminals as indicated in Fig. 2-12a. The voltages appearing
across L; and L, are given by the instantaneous mesh equations

di di

L ~ M3 =y
di di

~M P+ L = vw

Add and subtract M di;/dt in the first equation, M dis/dt in the second
equation, and regroup terms.

dh

(Ly — M) = a + Mdt (7,1 12) = Vi3

d . . )
M%(’La —1,1) =+ (L2 et M)7;=v32
But these are the mesh equations of the circuit in Fig. 2-12b, in which

there is no mutual inductance among the three self-inductances. There-
fore, if the same currents, 4, and ¢, are applied to the T network of
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Fig. 2-12b, precisely the same instantaneous voltages appear across the
input and output terminals of the T network as appeared across the
original network. Therefore, the two networks are equivalent.

2-13. Superposition Theorem. The principle of superposition is appli-
cable to cause and effect relationships in any linear system. In essence,
the principle states that the effect produced by a given cause is inde-
pendent of all other causes and effects. In consequence, the total effect
of two or more causes may be obtained by superimposing the effects pro-
duced separately by each cause. When the superposition principle is
applied to networks, it may be stated in terms of constant-voltage gener-
ators. There is a corresponding (dual) statement in terms of constant-
current generators.

The total current through any element in any network containing passive,
linear, bilateral elements and independent generators is equal to the algebraic
sum of the individual currents produced in the element by each of the inde-
pendent generators acting separately.

The proof of this theorem has, in effect, already been exposed for the
steady sinusoidal state. Examine the mesh current, I, in Eq. (2-16).

AuE AuE AnE,
= Audr, Andz o,y Ok

L A A A

The mesh determinant and all cofactors are constants. Each voltage
represents the sum of voltage rises owing to generators in a given mesh.
For a typical mesh r, for example,

Er=Ea+Eb+Ec+ st

where each term of E, is an individual generator voltage taken positive
in the same direction as I,. The form of I, shows that if every gener-
ator except one is zero, the component of I, produced in mesh k by the
remaining generator is a constant times that generator voltage. This is
true whether the generator is in an outer mesh or not. Hence, the
theorem is proved.

2-14. Reciprocity Theorem. The reciprocity theorem pertains to an
interchange of the sites of cause and effect. In certain restricted sys-
tems, the cause and effect relationship is unaffected by such an inter-
change. Tor electric networks, the theorem may be stated in terms of
a constant-voltage generator. There is a corresponding (dual) statement
in terms of a constant-current generator.

If a constant-voltage generator in any branch, r, of a passive, linear,
bilateral metwork produces a certain current in any other branch, k, of the
network, then this generator, when inserted in branch k of the network, will
produce the same current in branch r.
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A proof of this theorem for the steady sinusoidal state may be pre-
sented compactly in terms of transfer impedances, defined in Sec. 2-11.
To simplify the proof with no loss in generality, redraw the network as
required, so that the two branches

under consideration are outer E,
branches, as in Fig. 2-13a. When
E, is the sole generator applied in - Branch r— m
series with an outer branch of the
rth mesh of an n-mesh network, the
current in any other branch, k, is Passive linear Passive linear
: _ bilateral bilateral
given from Eq. (2-16) by network network
I, = AnE, _ E,
k A Zyy

w <— Branch &
-

When E, is the sole generator ap-

plied in series with an outer branch B
of the kth mesh, in which the cur- (@ )
rent .was L, it f_ouo_ws that the cur- Fi1a. 2-13. Illustrating the reciprocity
rent in mesh 7 is given by theorem.
AkrEr Er

I = -

A rk

Evidently, I, and I, are equal, since the transfer impedances z;, and z,
are equal. This proves the theorem.

2-15. Thévenin’s Theorem. Thévenin’s theorem is a powerful tool
for facilitating network calculations and often gives considerable insight
into the pertinent factors influencing network behavior. A statement of
the theorem follows. There is a corresponding (dual) statement of the
theorem in terms of an equivalent current generator, called Norton’s
theorem.

At any given frequency, any network containing passive, linear, bilateral
impedances and constant generators can, when viewed from any two termi-
nals, be replaced by a generator voltage, Eo, in series with an impedance, Z;,
where Eq is the open-circuit voltage across the two terminals and Z; is the
input tmpedance at the two terminals.

A proof of this theorem is presented here in terms of mesh determi-
nants. For purposes of the proof, connect an arbitrary impedance, Z,
to the two terminals 1-2 of the network to which the theorem is to be
applied (see Fig. 2-14a), and let the mesh so formed be designated as the
nth mesh of the n-mesh network. The mesh current I,, which is the
current through Z, is given by I, = A’/A,, where A, is the mesh determi-
nant of the network including the auxiliary element Z,
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Zu —Zyy - - —Z1a
a=|TEn Zmon TEe
_an '—'Zn2 D Znn + Z

and A’ is the determinant resulting when the nth column of A, is replaced
by the column of the generator voltages.

Zyw —Zy - E,
A = —Zn Zse E,

.

- an - Zn2 tct En

Note that Z does not enter A’ at all. Moreover, when A, is expanded
by the nth column, it may be expressed as A, = A + ZA,,, where A is

1 1
n-mesh
network I E, T

2 2

la) [t
Fia. 2-14. Tlustrating Thévenin’s theorem.

the mesh determinant of the network with Z = 0, and A, is the cofactor
of the nth row, nth column of A or A,. Neither A nor A,. contains Z.

The voltage drop from terminal 1 to terminal 2 is given by I.Z. This
becomes the open-circuit voltage when Z is allowed to approach infinity.
Hence,

) . A'Z A’
Eo = lim LZ = lim 2——7 = 4.

This result enables I, to be expressed in terms of E, as follows

I _ A_’ . EOAnn — EO
""" A, A+ZA.. A/AL+Z

But A/A., is the input impedance to mesh n, designated by Z; in the
statement of the theorem. It is the impedance looking into terminals 1-2
with all network generators replaced by their internal impedances and,
of course, with Z removed. Therefore,

— EO
I, = Z. v Z (2-18)
This proves the theorem.

A circuit representation of Eq. (2-18) is given in Fig. 2-14b, for the
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case of Z — «. Note that the short-circuit current in both the actual
and equivalent networks, when terminals 1-2 are joined, is given by
I.. = Eo/Z;. Hence, there are several ways in which the equivalent cir-
cuit may be deduced by analysis of a given network. One method, of
course, is to determine Eq and Z;. Another is to calculate I,, and either
Z; or Ey, from which the equivalent circuit may be deduced.

It should be emphasized that the Thévenin equivalent circuit is valid
only in so far as the terminals 1-2 and any external circuit are concerned.
It generally does not give information concerning conditions within the
original network.

2-16. Compensation Theorem. The compensation theorem enables
direct analysis of changes in network currents or voltages resulting from
a change in an impedance in a network. It is especially useful in bridge-
circuit analysis, and many examples are presented in later chapters. A
statement of the theorem follows:

In a network containing passive, linear, bilateral impedances and con-
stant generators, if any impedance carrying a current I is changed by an
amount Z, the changes in currents throughout the network are equal to those
produced by a generator 1Z initroduced in opposition to I in the branch
containing Z.

/N

1 VRN

Network Network Network
with 1 with T without
generators " generators Y, generators
IZ
(a) (b) (c)

Fia. 2-15. Tllustrating the compensation theorem.

A proof of this theorem is presented below in terms of mesh equations.
To simplify the proof with no loss in generality, rearrange the network
so that the impedance to be altered is in an outer branch, as in Fig. 2-15.
Let this outer branch be the nth mesh of an n-mesh network. The mesh
equations, before the impedance is changed, are given by Eq. (2-15).
The impedance to be changed is contained in Z,., but does not appear
elsewhere in the set of n-mesh equations. The current in a typical mesh
is given by Eq. (2-16). The current I need not traverse an outer branch,
but it is so illustrated for definiteness in Fig. 2-15.

Now let Z.., change to Z,, + Z, owing to a change Z in an outer branch.
(The real part of Z may be positive or negative.) All the currents in all
the meshes will generally undergo a change as a result. Using primes to
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designate the changed currents, the mesh equations become

ZnIi - ZmI; - - ZlnI;L = E1
—Zod] + Zgly — - - - — Z,,1, = E,

P o« .. * . . « .. P
—anli - anl; _ + (Znn + Z)I;. = En

The only place Z appears is in the nth row, nth column. The current in
the typical kth mesh is now given by

ALE
A,

ALE A En
I,/c= 2Ak,2+...+ Ak,

+

(2-19)

where the modified mesh determinant is A’ = A + ZAqa. Note that
A.; is unaffected by the change.

Now comes the trick. Add the term I,Z to both sides of the nth mesh
equation of the original network. The mesh equations are then, from
Eq. (2-15),

ZI — Zidy — ¢+ — AT = E,
—Zaul + Zoly — + -+ — Zs.1n = E,
_ZnIIl - Zn2I2 - + (Znn + Z)In = En + InZ

This does not affect any of the equations and cannot, of course, change
any of the original currents. However, a generator I,Z has, in effect,
been added to E,, and if the two I, terms on the left of the nth equation
are grouped together, as shown, the network determinant of the original
network then becomes the same as that of the modified network. There-
fore, I, still the same current, is now given by

A (E, + 1.Z)
A/

_ ALE:

ALE
I iy ah M

Comparing with Eq. (2-19), the sum of the first n terms of I is I
Therefore,
I, - I, = —-LZ %‘ (2-20)
This proves the theorem. The circuit interpretation of Eq. (2-20),
shown in Fig. 2-15¢, is that a sole generator 1,Z, in series with mesh n
of the modified network, acting in opposition to the original direction of I,
produces a current I; — I in an arbitrary mesh, k. But this is the change
in current produced by the change Z in the original network.

2-17. Approximate Form of Compensation Theorem. The compen-
sation theorem is often most useful when applied in its approximate form,
as amply shown by examples later in this text. In the approximate form,
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the same compensation generator, IZ, is used, but the change in imped-
ance, Z, is omitted from the compensation circuit of Fig. 2-15¢. The
omission of Z leads to simplification because the determinant and all the
cofactors of the original network are then the same as those of the net-
work to which IZ is applied. Moreover, in bridge circuits, the unbalance
produced by Z is restored when Z is omitted, and this leads to consider-
able simplification of calculations,

The important factor in using the approximate form of the theorem is
a knowledge of the error introduced by the approximation. An expres-
sion for the error is readily developed from the foregoing analysis of the
exact theorem. Let I/ — I, be the approximate value of the current
change in the kth mesh, resulting from application of a generator —I1,Z
in the nth mesh with Z omitted. Because Z., is now unaffected, it follows
from Eq. (2-20) that

A,
¢V —L=-LZ (2-21)

Define the fractional error in the two results as

g W —L) — I — L)
[ —L

This is the approximate change in current minus the exact change,
expressed as a fraction of the exact change. Substitute from Eqgs. (2-20)
and (2-21). Then

_ —LZAa.u/A + LZA, /A" A’

b= —1L.ZA,./A’ a1

But A’ = A + ZA,.. Therefore, the fractional error is

_A+ZAm | _,Am _ Z

8 A A "z

The ratio A/A,, is the input impedance to the nth mesh, z... Thus,
the fractional error entailed in the use of the approximate form of the
compensation theorem is equal to the ratio of the change in impedance,
Z, to the input impedance of the mesh in which the change is made.

In resistive networks, the input resistance r.. of mesh n is always
greater than any resistance R.,, in a separate branch that is a part of the
nth mesh. Therefore, if the branch resistance, R.,,, is changed by an
amount =+ R, the magnitude of the fractional error in the use of the
approximate theorem will be less than R/R.,.

R R

Bl = <&
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Thus, if the approximate current change in some branch of a resistive
network is calculated to be 1.0 ma as a result of a 2 per cent change in a
resistance, the 1 ma result is in error by less than 20 ua.

PROBLEMS

2-1 (§1). Find the average and rms values of the following functions between the
two stated values of the variable:

a. f(z) = a + bax? T1=1,22=3

b, g(t) = sin k¢ th = n/2k, ts = w/k

c. h(y) =1n ay 11 = 1/a, y. = 3/a

2-2 (§4). Prove by direct substitution that Eq. (2-4) satisfies the differential equa-
tion for the circuit of Fig. 2-3.

2-3 (§5). In the circuit of Fig. 2-3, E is replaced by a generator E sin (vt + ¢).
Determine an expression for the steady-state current by use of the e/ method.

2-4 (§5). Determine the steady-state solution of the following differential equation
by the et method.

2.
J%+DZ—?+S@; = A sin of

where J, D, S, A, and w are constants.

2-5 (§6). Prove that Kirchhoff’s laws hold for complex voltages and currents [see
Eq. (2-8)].

2-6 (§6). Prove Eq. (2-9).

2-7 (§6). Prove Eq. (2-10).

2-8 (§8). If V and I are the complex voltage and current associated with a passive
impedance, prove that the average power dissipated in the impedance is given by

P,, = i (VI* 4 V*I).

2-9 (§10). In the circuit of Fig. 2-9, convert the current generators to voltage
generators and determine the current through Y; by means of mesh analysis. Prove
that the result agrees with that obtained by node analysis.

2-10 (§10). In the circuit of Fig. 2-8, assign the lower terminal of Z; as the reference
node, convert the voltage generators to current generators, and determine an expres-
sion for the node voltage at the junction of Z; and Z;. Prove that the result agrees
with that obtained by mesh analysis.

2-11 (§11). In the circuit of Fig. 2-8, determine expressions for (a) the driving-
point impedance of mesh 1, (b) the driving-point impedance of mesh 2, (c) the transfer
impedance from mesh 1 to mesh 2, and vice versa.

2-12 (§12). What relationships must be satisfied among the three impedances of
the T network and the three admittances of the Pi network in Fig. 2-11, such that
the two networks are equivalent?

2-13 (§12). A sinusoidal generator (of zero internal impedance) represented by the
complex number E is connected between the left terminal of R; and node 3 in the
circuit of Fig. 12-12. A capacitor C is connected from the right terminal of R; to
node 3. For L, = L: = L and w = 1/2(L. — M)C}s, determine an expression for the
complex current through C.

2-14 (§12). In Fig. 2-11, let the input mesh of the passive, linear, bilateral network
be signified as mesh 1, and the output mesh as mesh n. Prove that the impedance Z;
of the equivalent T network is given by

AAIn

Zy =228
3 Au Am. b Aln2



LINEAR CIRCUIT ANALYSIS 43

where A is the mesh determinant and Ay, Ay, and A,, are cofactors of the general
network.

2-16 (§13). Determine an expression for the current I, in the circuit of Fig. 2-8
by application of the superposition theorem ; that is, find the current in Z; attributable
to E, with E; = 0, and add to this current that attributable to E;, with E, = 0.

2-16 (§14). A sinusoidal generator represented by the complex number E is applied
between terminals 1-3 of the Pi network of Fig. 2-11. The generator has an internal
impedance Z. Aload impedance, Zz, is connected between terminals 2-3. (a) Deter-
mine an expression for the current through Z;. (b) Prove that the same current is
produced in Z when E is connected in series with Zz.

2-17 (§17). The T network of Fig. 2-11 is purely resistive with Z, = 2 ohms,
Z, = 4 ohms, and Z; = 6 ohms. A 6-volt battery with a 1-ohm internal resistance
is connected across terminals 1-3, and a 2-ohm resistive load is connected across
terminals 2-3. (a) Use the compensation theorem to compute the change in battery
current that results from a 1-ohm increase in the load resistance. (b) Since the input
impedance at the location of the 1-ohm change is 8 ohms, the approximate compen-
sation theorem should give a result that is high by one-eighth times the answer in
part (a). Show that this is so by direct computation.



CHAPTER 3

GALVANOMETERS, SHUNTS, AND D-C METERS

The d’Arsonval meter movement is perhaps the most commonly
encountered of all electrical indicating devices. Its operation is based
on the interaction between an electric current and a magnetic field. This
movement constitutes the heart of many different kinds of deflection
instruments. Because of its importance, basic principles of its operation
are presented in detail. The static deflection is emphasized in this
chapter, and principles of its dynamic behavior are explored in the
following chapter.

GALVANOMETERS

A galvanometer is an electromechanical device in which a useful torque
is produced as a result of interaction between an electric current, passed
through the coil of the instrument, and a steady magnetic field existing in
the environment of the coil. There are many different types of galva-
nometers, such as the tangent galvanometer, the Helmholtz galvanome-
ter, the string galvanometer, the moving-magnet galvanometer, and the
moving-coil galvanometer. The d’Arsonval galvanometer is a perma-
nent-magnet moving-coil type, also referred to as a meter movement
(especially when portable). It is widely used to provide a direct measure
of electric current. D’Arsonval movements are used in portable d-c
ammeters and voltmeters as well as in sensitive wall galvanometers.
They are also found in many a-c instruments as the final device that
produces an observable reading, the alternating current being converted
to direct current before application to the movement.

3-1. Advantages of d’Arsonval Movement. It is no accident that this
type of indicating instrument has come into such widespread use. Its
many advantages make it useful in both portable applications and deli-
cate permanent installations, with appropriate design. Some of the sali-
ent advantages of this movement follow: It may be designed to have
very low power consumption and yet it inherently possesses a high ratio
of torque to weight. A long scale with uniformly spaced scale divisions
(uniform scale) may be conveniently achieved. The operation of the

instrument is relatively free from effects of stray magnetic fields that
44
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often exist in the environment in which such meters may be used. A fea-
ture enabling versatility is that resistive shunts may be readily designed
and incorporated to give a wide range of sensitivity. Moreover, the
movement has desirable dynamic characteristics for many applications,
important among which are rapid speed of response to a given change in
current and capability of being damped in critical fashion so that objec-
tionable overshoots and undue sluggishness of response may be avoided.
The high attainable sensitivity, especially in nonportable version, enables
quick measurement of minute currents. This is superior to time-con-

e~ Current
terminal

Filamentary
suspension —

Magnetic

circuit\/

Scale

Mirror

Spring and
pivot
Rotatable
cot Indicating
Fixed iron core Metal ribbon
Magnetic iron core

Current terminal — circuit
Fig. 3-1. Components of d’Arsonval Figc. 3-2. Components of d’Arsonval
mirror galvanometer. meter movement.

suming chemical deposition methods that may also be employed to meas-
ure such small effects. With some sacrifice in sensitivity, it is possible
to design very sturdy portable instruments. All these advantages,
coupled with low cost, suggest why it is the movement of choice in
many applications.

This rather imposing list of advantages should provide an incentive
for careful study of the principles of operation. A sound basis may
thereby be provided for a good understanding of the many applications
of d’Arsonval movements.

3-2. Description of Movement. Two different versions of the d’ Arson-
val instrument are shown in Figs. 3-1 and 3-2. The mirror galvanometer,
usually mounted rigidly on a vibration-free base, is used when high sensi-
tivity combined with a long scale is needed. It is essentially a laboratory
instrument, being rather delicate and requiring many precautions in its
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adjustment and use. In contrast, the portable version, usually housed
inside a small case or box, is quite rugged. Ordinarily it may take con-
siderable abuse without injury, but certain reasonable precautions are of
course desirable.

Although the two movements pictured are very different in detail, they
are basically the same in principle and have the following elements in
common: (1) a rotatable coil, (2) a steady magnetic field, (3) provision

Light ray from scale

d mm, scale deflection
“ F1e. 3-3. Mirror galvanometer optical system.

for a restoring torque on the coil, and (4) a means for detecting angular
deflection of the coil. In both cases the movements employ close-wound
coils of multiple turns, and a permanent magnet provides the steady
magnetic field, with a core inside the coil (but not attached to it physi-
cally) to give a concentrated field of suitable characteristies.

In the case of the mirror galvanometer, the moving coil may hang
freely from a fine-wire suspension so that it is capable of rotation about
its axis, as shown in Fig. 3-1. (In some designs a double taut suspension
is used.) The filamentary suspension also provides a restoring torque,
or back twist, to counteract rotation of the coil produced when current is
passed through it. A metal ribbon is connected to the bottom of the coil
which, to a very slight extent, provides a small portion of the restoring
torque. The filamentary suspension and the ribbon are also used as leads
via which current is passed through the coil. The angular location of
the coil may be determined by optical means as illustrated in Fig. 3-3.
A small mirror mounted rigidly to the coil forms a portion of the optical
system that also includes a telescope and scale. The scale receives
general illumination, and rays of light pass from the scale to the mirror
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F16. 3-4. Mirror galvanometer. (Courtesy of Leeds and Northrup Company.)
and thence into the telescope, in which the observer sees the scale image.
Another common optical arrangement consists of a light source whose
rays are focused, by means of lenses, onto the mirror and thence to a
ground-glass scale.

In the portable version of this galvanometer, the movable coil is pivoted
between two low-friction jewel bearings and is free to rotate, The restor-
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ing torque is provided by spiral springs attached to each end of the coil
and anchored to the frame of the instrument. Current is delivered to
the coil through the restoring springs, and both ends of the circuit are
brought out to a pair of terminals. The angular rotation of the coil is
indicated directly on a scale by a counterbalanced indicating pointer,
rigidly attached to the coil.

While the two movements deseribed are representative, there are many
variations in construction details and materials, depending upon the

|

F1c. 3-5. Pivoted-coil meter movement. (Courlesy of Weston Eleclrical Insltrument
Corporation.)

application for which the instrument is designed. Photographs of typi-
cal instruments are shown in Figs. 3-4 and 3-5. The practical design
considerations, many of which are empirical, form the basis of a special-
ized instrument art. Galvanometers with highly satisfactory perform-
ance have been built, and progress continues in response to more exacting
demands. It is possible to investigate in some detail the principles on
which galvanometer operation is based, making simplifying assumptions
as necessary. This leads to a comprehension of its operation and limi-
tations and to an appreciation of several factors influencing its design.
3-8. Basic Force Law. The law of force on an electric charge is per-
haps one of the most significant equations in electrical engineering.
There are two different origins of electrical forces exerted on an electric
charge. These are called the “electrostatic” force and the ‘“magnetic”
force. Two vector fields, postulated in electrical theory to be responsible
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for these forces, are appropriately called the force fields. They are the
electric field intensity, &, and the magnetic flux density, B. In the mks
system of units, & has the dimensions volts per meter, and B has the
dimensions webers per square meter. The instantaneous force on a point
charge ¢ coulombs moving with velocity v meters per sec is related to the
two fields by the law

f=¢q¢@E&-+vXB) newtons ) (3-1)

This force equation is frequently taken as the defining equation for the
two fields in modern approaches to field theory. If the electric field is
negligible, or, more precisely, if ¢& is negligible compared with the cross
product ¢(v X B), then a special case of Eq. (3-1) pertains.

f = ¢q(v X B) &§=0 (3-2)

For the particular case of electric charges moving within a conductor,
as in the galvanometer coil, the force v
law may be formulated in terms of
conduction current rather than
charge. In Fig. 3-6 an infinitesimal
vector length ds of a current-carrying
conductor is shown at an angle « with
respect to a magnetic field B. The
charges in the conductor actually
move in very chaotic fashion, but it
is usual in ordinary circuits to con-
sider average effects. A bundle of
charge, dg, contained in the length ds
of the thin conductor is thought of Fie. 3-6. Illustrating force on a cur-
as traversing the wire with a certain rent element.
instantaneous velocity v = ds/df. The electric conduction current is,
by definition, ¢ = dg/dt, where dg is the charge passing a given cross
section of the wire in a time d¢. Multiplication of both sides of this
defining equation for current by ds results in

ds
dt

z’ds=g—tqu=dq —dqv (3-3)

The instantaneous force, df, on this infinitesimal element, assuming & = 0,
is given by Eq. (3-2), where B is the magnetic flux density in which dq
finds itself. Combining Eqs. (3-2) and (3-3), there results

df =7ds X B newtons €=0 (3-4)

This gives the instantaneous vector force, df, on an infinitesimal current
element 7 ds located in a magnetic field, B. The magnitude of this force is
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iB sin a ds, its direction is along a line perpendicular to the plane con-
taining ds and B, and its sense is given by the direction of advance of a
right-hand screw when rotated such that ds swings toward B through the
least angle between ds and B. The
magnitude, direction, and sense are all
contained in the compact vector cross-
== product notation of Eq. (3-4).
= o 3-4. Force on Coil in Uniform Field.
An illustration of coil-force calculations
X for a simple galvanometer configura-
\ tion may be developed with reference
f i to Fig. 3-7. An n-turn rectangular coil
of width Wisshown in auniform B field,
! nturncoil  produced between rectangular pole
- pieces of a permanent magnet. The
precise meaning of a ‘“‘uniform” field
is one that has the same magnitude
and direction at every point within the
volume of interest.

For an elementary analysis it is nec-
: essary to idealize the physical system.
Assume that the coil winding con-

Axis of rotation sists of such thin wire that the coil
Fie. 3-7. Illustrating force on gal- cross section is very small (more pre-
vanometer coil. cisely, the width of the bundle of n
turns must be negligible compared with W). Furthermore, neglect
fringing of the B field; that is, assume that the field is confined entirely
to the rectangular volume of cross section equal to that of the pole pieces.
The coil, carrying a current ¢, is assumed to have only one degree of free-
dom, rotation about an axis in the plane of the coil a distance W /2 from
each of the two coil sides.

The total force on one side of the coil may be determined by appli-
cation of the basic force law, given in convenient form by Eq. (3-4).
Consider an infinitesimal current element ¢ ds of one of the n turns of
the left side of the coil as shown in Fig. 3-8. The infinitesimal vector
force on this element is given by df; = 7 ds X B. The direction of df; is
mutually perpendicular to ds and B, and the sense is given by the right-
hand screw rule, as shown pictorially in Fig. 3-8. Since the angle «
between ds and B is 90° for any angle of twist, 6 (see Fig. 3-7), the magni-
tude of this force is df; = ¢B ds.

To obtain the force on one turn of one coil side, it is necessary to add
vectorially all of the infinitesimal forces on each element of which the
side is comprised. In many instances this vector integration poses a
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formidable problem, but in this case the integration is very simple. The
formal integral may be set up by defining an s axis along the left coil side,
directed from the top toward the bot-
tom of the coil. Taking s = 0 at the
top edge of the rectangular volume
to which B is confined, the force on
one turn of the left coil side is given
by

o= [t = [Fidsx B (3-5)

where L is the length of the rectangu-
lar volume containing B. TFor s less
than zero or greater than I, B is zero
and hence df, is zero, even though the
coil itself may be longer than L.
Hence, the limits of integration indi-
cated will give the correct result,
within the assumption made concern-
ing no fringing. Since every df; has  Fia. 3-8. Force on one element of gal-
the same magnitude and direction Vvanometer coil.

for every element, a being 90° and ¢ and B being fixed, the force f,
has the same direction as df; and its magnitude is given by the scalar
integral

fi=[iBds =B [ ds = BiL (3-6)

This result is a familiar formula for the force on a straight conductor that
is perpendicular to a uniform B field. The restrictions on this result, and
the way in which it evolves from the basic force law, are conceptually
more important that the BiL formula itself. It is for this reason that it
has been developed from first principles. The highly specialized nature
of Eq. (3-6) is apparent from the successive restrictions imposed in the
course of developing it.

The same result for f; will hold for each of the n-current filaments of
the left coil side. Therefore, the magnitude of the total force on the left
side of the n-turn coil is

f=nfi = nBilL 3-7)
and its direction is mutually perpendicular to B and to the coil side, as
shown in Fig. 3-7.

3-5. Torque on Coil in Uniform Field. A similar analysis of the right
side of the n-turn coil leads to the same magnitude of force, but the sense
of f is reversed because 7 is reversed relative to B. Thus, each coil side
experiences the same total force f = nBiL, but the net force acting on
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the m-turn coil is zero. Hence, there will be no translatory motion.
However, the pair of forces form a couple to produce rotation.

In order to describe the angular location of the coil, define an angle ¢
(shown in Fig. 3-7) and take ¢ = 0 when the plane of the coil coincides
with the lines of B. Then 6 = 90° when the plane of the coil is perpen-
dicular to lines of B. The force on each coil side is independent of 6
because «, 7, B, and L do not depend on 6. The torque tending to rotate
the coil through an angle ¢ may be formulated by selecting any axis
parallel to the actual axis of rotation and adding the products f times
the corresponding lever arms. For example, if an axis is taken through
the right coil side (see Fig. 3-7), the lever arm of f acting on the right
coil side is zero while that of f acting on the left coil side is W cos 6.
Thus, the torque is

T = fW cos 8§ = nBiLW cos § = nBi{A cos 0 (3-8)

where A = LW is the “effective’” coil area, and is actually less than the
physical area of the coil when the coil length extends beyond the assumed
confines of the B field.

If it is perplexing to determine the torque by means of the convenient
axis selected, this can be dispelled by using the actual physical axis of
rotation, obtaining the same result. For the actual axis of rotation, each
force, f, acts through a lever arm equal to (W/2) cos 6; hence, each force
contributes equally to the total torque. Consequently, the total torque
is twice the torque produced by one of the forces, and is given by

T=2(f%/cosﬂ>=chos¢9

in agreement with Eq. (3-8).

Suppose the coil angle, 6, is zero when ¢ = 0. If a constant current, /,
is suddenly applied, a torque, T, will be created and will produce angular
rotation of the coil if it is free to turn. As the coil rotates, the torque .
will diminish, despite the fact that f remains constant, because the lever
arm becomes smaller as § approaches 90°, becoming zero at 6 = 90°.
Thus, the coil will experience a variable (angular—dependent) torque.
Though it may initially overshoot 8 = 90°, owing to the suddenness of
the disturbance and the inertia of the coil, it will oscillate about § = 90°
and eventually come to rest in the stable state of zero torque. This will
happen for any direct current, I, large enough to produce a torque over-
coming the friction of the axis on which the coil is pivoted. Thus, it is
seen that this galvanometer is incomplete. It does not produce an angu-
lar deflection bearing a unique relationship to the coil current. Inclusion
of a restraining or restoring torque accomplishes the desired result, as
described in the next section.
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3-6. Law of Static Deflection and Design. A restoring torque may be
furnished for the rotatable coil by a variety of mechanical spring arrange-
ments. The usual design provides for a linear restoring torque, one that
is proportional to the angular twist of the spring, and given by

T, = S6 (3-9)

where S is a constant (provided the elastic limit of the spring is not
exceeded) called the spring constant. Its dimensions are newton-meter
(per radian) in the mks system of units.

The equilibrium angle of twist of the coil is determined by the applied
torque, T, traceable to the interaction of 7 and B, and the restoring
torque, T, provided mechanically by the spring, and is defined by 7' = T,.
Expressing this equation of torques in terms of 8, for a direct current
1 = I, results in

nBIA cos 6 = S8
Solve explicitly for I.
S Ko

I=nBAcos0=cose

(3-10)

where K = S/nBA is called the instrument constani and is fixed for a
given galvanometer. The relationship between the direct current I, the
independent variable, and the equilibrium angle 6, the dependent varia-
ble, is called the law of static deflection. For the galvanometer that has
been analyzed, it is evident that I is a somewhat complicated function
of 8. However, for small currents and corresponding small values of 6,
cos 6 is approximately unity so I is approximately proportional to 6.
Despite the many simplifying assumptions used in the analysis, it is
possible to gain insight into some of the factors important in practical
galvanometer design, by examining the instrument constant, K. In
designing galvanometers, it is often desired to produce a large 6 for a
small coil current, that is, to design a sensitive instrument. This means
that a small K is needed. Since K = S/nBA, it follows that K becomes
smaller if S is made smaller and if n, B, and A are made larger. In each
case, however, there are conflicting requirements. This phenomenon is
known to the designer as ‘“the law of spite.” For instance, if S is made
smaller, the spring (and hence the instrument as a whole) becomes more
delicate and fragile. If n and A are made larger, the weight, size, and
inertia of the coil are increased, and this conflicts with a desire for a
small, light coil capable of rapid response. A larger B calls for better
permanent-magnet materials, which are more expensive; also, operation
above certain levels of B with a given magnet material may impair the
“permanence,” which would produce instability of galvanometer cali-
bration. These and other factors not considered here suggest the intri-
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cate compromise of all factors that is inevitable in designing a galva-
nometer for a given application.

3-7. Scale Characteristics. The law of deflection of a galvanometer
bears an intimate relationship to the characteristics of the scale from
which readings related to [ are obtained. In the case of a portable
instrument with pointer affixed to the coil, the pointer angle and the
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Fia. 3-9. Law of deflection of uniform-field galvanometer.

coil angle are in one-to-one relationship. In the case of the mirror galva-
nometer described, the scale angle is twice the coil angle for a circular-arc
scale centered on the coil axis (see Fig. 3-3). If a straight scale is used
instead of a circular-arc scale, the scale reading becomes a more compli-
cated function of 8, especially when 6 is not small.

In cases where the scale angle is some constant times 6, the law of
deflection discloses complete information. A plot of the law of deflection
for a uniform-field instrument, shown in Fig. 3-9, indicates that for small
values of 6, I = K6, but the departure from a uniform scale increases
progressively as 6 approaches 90°. A physical explanation for the non-
uniformity may be found by examining the lever arm through which the
force, f, exerts a torque, since the cos 8 term is responsible for the depar-
ture from linearity. For small 6, the lever arm (W /2) cos 6 remains
sensibly constant, but as 8 approaches 90°, the lever arm tends rapidly
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toward zero. As the limit is approached, f, which is proportional to I,
may increase tremendously while a very small angular increase in 0
reduces the lever arm by a large percentage.

Another meaningful way of portraying the law of deflection is in terms
of an actual scale that might be used in conjunction with a pointer
attached directly to the coil, as shown in Fig. 3-10. The uniform por-

0.5 Lo

F1c. 3-10. Scale characteristics of uniform-field galvanometer.

tion of the scale is spread out over a considerable arc toward the zero end
of the scale. However, the scale readings in terms of coil current become
increasingly crowded at larger values of I, so much so that the upper
portion of the scale has very limited readability. The value of § may be
calculated from the law of deflection after inserting a designated value
of I. For instance, substitution of I = ¢K, where ¢ is any constant, into
Eq. (3-10) yields 6 = ¢ cos 8. The value of 6 for any specified numerical
value of ¢ may be obtained from this transcendental equation by numeri-
cal trial-and-error solution.

The range over which the scale is uniform is often of particular interest.
A first-order approximation for departure from uniformity for small
deflections may be formulated. In the present case of I = K#6/cos 8, the
following expansion will converge rapidly for small 6.

I = Ké(cos )1
02 04 —1 02 504
=K0<1—?+4F+) =K6(1+§_4—'+> (3-11)

If (62/2) < 1, the law of deflection is given approximately by I = K¢,

and the scale is uniform. However, if 62/2 is small but not negligible,

the difference between the linear law and the actual law is, to a first-
order approximation,

92 Ko?

Ko—Ko(1+§ = -5

Expressed as a percentage of K9, this gives —10062/2 = —5062 per cent.

‘Thus, if the deflection is 0.1 radian = 5.7°, the departure from linearity

(3-12)
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is approximately —50(0.1)2 = —14 per cent. The negative sign indi-
cates that the actual deflection is less than would be obtained if the law
of deflection were I = K.

3-8. Radial-field Instruments. The uniform-field design is not com-
mon because the objectionable cos 6 term upsets the proportional relation
between I and 6. In the most popular version of the d’Arsonval instru-

Fia. 3-11. Uniform radial field galvanometer.

ment, a uniform radial field is used, as shown in Fig. 3-11, and this yields
a uniform scale. Another advantage of this construction is that the
B field is less susceptible to external stray magnetic effects than in the
case of no central core. Shaping of the field is accomplished by use of
curved pole pieces and a central core designed so that the field in the
air gap is radial. A uniform radial field is constant in magnitude every-
where in the region of the coil, but is not the same as a uniform field
because of its variable direction.

Review of the analysis of force on one coil side in the uniform-field case
reveals that the magnitude of the force is given by the same expression in
the case of the uniform radial field. However, in the case of Fig. 3-11,
the direction of the force on a coil side depends upon the angle of twist
of the coil. f remains perpendicular to the plane of the coil for all 8
within the working range of the radial field. Therefore, the magnitude
of the torque acting on the coil, owing to the forces f on the coil sides,
is given in this case simply by 7 = fW. This is not a function of 6,
as in the uniform-field case, because the lever arm is constant for any 6
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as long as the coil side is in a radial-field region. Thus, the essential
thing accomplished by the radial field is circumvention of the variable
lever arm by maintaining the direction of the force perpendicular to the
plane of the coil.

The equation of the torques acting on the coil, using a restoring torque
T. = 86 as before, now gives fW = S6. With fW = nBI A, the law of
deflection for the uniform-radial-field galvanometer becomes

Se
I = "BA = Ko (3-13)
The instrument constant, K, is given by the same expression as in the
uniform-field case. Scale readings are now proportional to I, if a circular-

Fia. 3-12. Galvanometer with nonuniform field.

arc scale centered on the mirror is used with a wall galvanometer of this
type. Similarly, a circular scale traversed by a pointer attached to the
coil, in the case of a portable instrument, is also uniform when calibrated
directly in terms of current. In practice, exact uniformity of scale cannot
be achieved because of such factors as slight irregularities of the B field
and variable friction in pivot bearings.

Shaping the B field to achieve a prescribed law of deflection is an inter-
esting factor in galvanometer design. The two types of fields described
are representative examples, but by no means do they exhaust the possi-
bilities. There are many instances where a prescribed type of nonuniform
scale is desirable. For example, a commercial light meter, used in photo-
graphic work to determine camera exposure time, might have the pole-
piece and core arrangement shown qualitatively in Fig. 3-12. In this
case the field is deliberately distorted in a gross manner so as to produce
an extremely nonuniform scale. The design is compatible with the sensi-
tivity of photographic film as well as with the characteristics of a photo-
cell that generates the coil current when exposed to illumination.

3-9. Galvanometer Sensitivity. The relation between steady coil cur-
rent and the steady-state deflection it produces is one of the pertinent
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static characteristics of a galvanometer. It is useful for specification of
galvanometer requirements in certain applications and for describing to
other scientific workers the sensitiveness of the instrument used. Galva-
nometer sensitivity may be a rather treacherous matter because of the
multiplicity of definitions extant. This is further compounded by resis-
tive shunts used in conjunction with galvanometers. Fortunately, the
matter of sensitivity is somewhat less confusing in the case of packaged
instruments.

Before presenting some sensitivity definitions the meaning of critical-
damping resistance will be explored in qualitative terms. The transient
or dynamic characteristics of the moving coil are controllable by and
susceptible to the resistance in the circuit that supplies current to the
galvanometer coil. A low-resistance circuit tends to damp the moving
coil so that its behavior is sluggish, while a high-resistance circuit may
permit prolonged oscillatory motion of the coil. How this interesting
effect comes about will be studied in the next chapter. In either case,
the time required for the deflection to settle to a steady reading is longer
than if some intermediate value of resistance is used. In most appli-
cations, a short settling time is desirable and the value of external resist-
ance required to achieve this result is called the critical-damping resist-
ance. It is customary to place a shunt directly across the galvanometer
terminals of such value as to produce critical damping. Then a high-
resistance circuit is used to supply current to the shunted movement.
The portion of the incoming current that is diverted in the shunt obvi-
ously does not produce torque on the galvanometer coil. Thus, the
resistance of the shunt affects the relationship between current supplied
from the external source and instrument deflection produced. The criti-
cal-damping resistance is usually counted against the galvanometer sensi-
tivity; that is, it is usually understood that galvanometer sensitivity is
specified and measured in terms of a critically damped instrument.

There are at least three different kinds of sensitivity definitions used in
mirror galvanometers. These are current sensitivity, voltage sensitivity,
and megohm sensitivity. One definition of current sensitivity is the ratio
of scale units deflection per unit current. This may be symbolized by
S; = d/I, where d represents units of scale deflection produced in steady
state as the result of applying a direct current I to the shunted instru-
ment. The scales of mirror galvanometers are usually marked in milli-
meters, and S; is often measured with a standard current of 1 ua. Then
S; is specified as d mm where it is understood that I = 1 ua. Clearly,
the larger the S;, the more sensitive the instrument. This definition
may be deceptive because no provision is made for the distance, D,
between mirror and scale. For a given movement, Sy is proportional to
D, using a circular-arc scale. Thus, if one investigator uses D = 50 em
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with the identical movement for which another uses D = 1 meter, the
first investigator’s S; will be half the second’s.

To overcome the difficulty of variable scale distance, another definition
of current sensitivity, S;, may be employed that takes scale distance into
account: S; = d/DI, where D is the scale distance in meters. The stand-
ard scale distance is D = 1 meter. It is common to specify S; in terms
of d mm, where it is understood that D = 1 meter and I = 1 pa. If
the galvanometer scale distance is different from 1 meter, the observed
deflection in millimeters resulting from application of 1 pa is corrected
appropriately.

Even a third kind of current sensitivity definition is used. It is
essentially the reciprocal of either S; or 8;. It is the current required
to produce unit scale deflection, and may or may not be corrected for
the standard scale distance of 1 meter. A unit scale deflection of 1 mm
is usually employed. Note that the larger the current required to pro-
duce 1 mm deflection, the less sensitive the instrument.

Voltage-sensitivity definitions follow a pattern similar to the current
sensitivity. The deflection produced by a unit voltage, a standard value
of 1 uv, serves as one definition: Sy = d/V. If allowance is made for
scale distance, Sj = d/DV is used, again referred to a standard scale
distance D = 1 meter. Similarly, the voltage required to produce a
standard unit scale deflection of 1 mm is also used. Since the voltage
source employed in measuring voltage sensitivity usually has very low
impedance, it is customary to place the critical-damping resistance in
series with the movement.

The megohm sensitivity is defined as the number of megohms required
in series with the shunted. galvanometer to obtain unit scale deflection
with one volt applied to the entire circuit, and referred to a standard
scale distance of 1 meter. The equivalent resistance of the shunted
galvanometer is negligible compared with the number of megohms, M,
required. Hence, the applied current is 1/M wa and it produces 1 mm
deflection. A little thought indicates that the megohm sensitivity and
Sy are numerically equal, since S} is the number of millimeters of deflec-
tion produced by 1 ua.

A circuit arrangement useful for measuring galvanometer sensitivity is
given in Fig. 3-24 (see Problem 3-10).

GALVANOMETER SHUNTS

In addition to providing critical damping, shunts are also used with
galvanometers to deliberately reduce the sensitivity, which is desirable
in many applications. For example, when a galvanometer is used as a
detector in a bridge circuit, protection of the galvanometer from excessive
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current is necessary during preliminary balance adjustments. As bridge
balance is approached more and more closely, a corresponding increase in
sensitivity is required. In other ap-

I _ Im plications, the versatility of the gal-
vanometer may be enhanced greatly

I Rm if there is a rapid means for changing

its sensitivity in an accurate pre-

Shunt & R, Galvo scribed manner, so as to extend the

over-all range of the instrument.

3-10. Simple Shunts. A simple
shunt consists of a resistor connected
directly across the terminals of the galvanometer coil (see Fig. 3-13).
The current is often (but not always) supplied from a source whose inter-
nal resistance is large compared with the combined parallel resistance of
the shunt, R,, and the resistance of the moving coil, R,,.

The galvanometer current, I,, is given immediately by the current-
splitting rule, R,/(R, + R,) times the incoming current, I.

Fia. 3-13. Simple shunt.

R,

In= % ¥R

I=FI (3-14)

The factor ¥ = R,/(R. + R.), by which I is multiplied, is called the
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F1g. 3-14. Universal curve for simple shunt,

current-reduction factor. By suitable choice of R,, this factor may range
from O to 1.0 as R, varies from O to infinity (no shunt). The inverse of
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the current-reduction factor, (R, + R.)/R., is called the multiplying
ratio of the shunt, since it is the quantity by which I, must be multi-
plied to deduce the value of I.

A plot of the behavior of the current-reduction factor, F, as a function
of the dimensionless independent variable, p = R,/R,,, is given in Fig.
3-14. The equation of the curve is obtained by setting R, = pR, in
Eq. (3-14), where p = 0. Then

I, oR., 1

F =T =R+ R " T+ 1/

(3-15)

For p K1 (R, K R.), the 1 may be
neglected in the denominator of F
in comparison with 1/p, and F =~ p; Ry,
hence, the curve is asymptotic to

the straight line of slope 1 passing

through the origin. The asymptote R R g, Galo
for p>> 1 is F = 1 since in this case ° 2 s

1/p may be neglected in comparison
with 1 in the denominator of F. The
two asymptotes intersect at the abscissa p = 1.

An arrangement of several different shunt resistors may be constructed,
as in Fig. 3-15, so that different fixed values of R, are provided at the
turn of the shorting-type switch.

3-11. Ayrton Shunt. The principal disadvantage of the simple shunt
in galvanometer applications is that the value of R, required to achieve
the necessary current reduction is usually not compatible with the value
of R, required for critical damping. However, it is possible to devise a
shunt arrangement using two external resistors so that a wide range of
current-reduction factors may be obtained while still presenting critical-

damping resistance across the galvanom-
T VWV ©o——  eter terminals.

~yY

I, In

F1a. 3-15. Multiple simple shunts.

Ry Im . . . .
I, R Inclusion of a resistor R, in series with
m . .
the galvanometer, as shown in Fig. 3-16,
R, Galvo provides the extra degree of freedom.

For simplicity, assume the source of the
incoming current has an internal imped-
ance much larger than the parallel resist-
ance of B, and R, + R,,. If R.isthecrit-
ical-damping resistance required across the galvanometer terminals, then
one condition on the shunt arrangement is B, = R, + R,. This means
that R, must be restricted to values equal to or less than R,. On the

Fic. 3-16. Hlustrating principle of
Ayrton shunt.
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other hand, the current-reduction factor for this shunt is

— Rs
_Rm+Rl+Rs

which is obtained directly from the current-splitting rule. Hence the
value R, = R, + R. may be achieved for any R, £ R, by suitable choice
of Ri:. At the same time, F may
range over values from F =0
(with R, =0 and R, = R, to
F = R.,/(Rn + R.) (with R, = R,
and R, = 0). This example illus-
trates the principle of the Ayrton
shunt.
The usual arrangement, shown in
Fig. 3-17, provides for selection of
Fra. 3-17. Ayrton shunt. several current-reduction factors
while maintaining constant the re-
sistance seen by the galvanometer. For any given setting, the circuit con-
figuration is the same as in Fig. 3-16. [R, corresponds to R./n and R,
corresponds to R,(1 — 1/n).] For a high-impedance source, the resist-
ance seen by the galvanometer is constant and equal to R, for any switch
position. The current-reduction factor, given directly by the current-
splitting rule, is F = (R./n)/(R. + R.), where n is any constant equal
to or greater than 1.0, and 1/n signifies the fraction of R, through which
the shunted current passes. With this value of F, the input current, I,
is related to the current through the movement, I,,, by

R.
n(Rn + R.)

The case n = 1 (tap 1 in Fig. 3-17) corresponds to the simple-shunt case
analyzed in the preceding section. The multiplying ratio, 1/F, of the
Ayrton shunt is n(R, + R.)/R., which is n times the multiplying ratio
of a simple shunt. Hence, n is called the relative multiplying power.
In commercial form, the switch taps are often arranged to give successive
changes in sensitivity in 10:1 ratios.

3-12. Special Shunts. If the source impedance of the current, I,
entering the Ayrton shunt is not large compared with R, and R, in
parallel, the ratio relationships in the various switch positions are dis-
rupted, and also the damping does not remain constant. In such cases
an external resistor large compared with EB.R,./(R. 4+ R.) may be inserted
in series with the source to avoid errors, but this might be undesirable
because higher impedance levels tend to be more susceptible to stray
pickup, and also the available current would be reduced.

F

~ From
high-impedance
source

I, =FI = I (3-16)
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To illustrate that the source impedance may disrupt the ratio, consider
the two-position Ayrton shunt in Fig. 3-18. Application of the current-
splitting rule in the case of a constant-current source, I, yields the galva-
nometer current [,,; when the switch is on tap 1.

I (R + Ry)I
™" Ri+ R+ Rn
When the switch is on tap 2, the galvanometer current is given by
.= R.I
™ " Ri+ Ry + R.,

where the same input current is assumed in the two cases. This will
be applicable if the source impedance of I is very large compared with
R.(R, + R,)/(B1+ R;+ R,). Clearly, the ratio of the two galva-
nometer currents is

I, ERi+ R,

Ry
_———— —3 —_— —1
Too s 1+ % (3-17)

Now, instead of a current source, I, suppose a zero-impedance voltage
source (an extreme example) of emf E is applied to the shunted galva-
nometer. Then, with the switch on tap 1, the galvanometer current is
given by I, = E/R,. When switched to tap 2 the galvanometer cur-
rent is I,,, = E/(R, + R.). In this case the ratio of the galvanometer
currents is

I.. Ri+ R,

R,
.~ R, = 1+ R, (3-18)
This is an entirely different result from the current-source case.

Special shunts may be designed for specific applications in which the
source impedance is not large enough to
satisfy the conditions assumed in the
Ayrton shunt. Moreover, when the
source has a resistance smaller than R,
special shunts may be devised to obtain
critical damping accompanied by a speci-
fied current-reduction ratio. Suppose
the source of incoming current, I, is rep-
resented by a direct emf, E, in series with
an internal resistance, R. If R is less than R, a resistor R, may be added
in series with E as shown in Fig. 3-19q, and a shunt resistance R, may be
utilized to provide the current reduction. At the same time the resist-
ance seen by the galvanometer, Ry(R + R,)/(R + R; + R.), is made
equal to E.. Alternatively, the circuit shown in Fig. 3-19b might also be
designed to accomplish similar ends.

Fig. 3-18. Two-position Ayrton
shunt.
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In cases where R is greater than R, but not large enough to be ignored,
a simple shunt such as in Fig. 3-13 could be used and designed such that
the resistance seen by the galvanometer, RR,/(R + R.), is made equal to
R,, but the current reduction would be fixed once R and R, were specified.
The arrangement shown in Fig. 3-19b with RR;/(R + R;) £ R, might
also be employed when R > R,. Thus, a variety of possibilities in

To galvo

_ R2(B+R1)
R+R1+Rp

>
—O —>

Fia. 3-19. Special shunts.

special cases may be deduced from elementary circuit analysis in combi-
nation with some ingenuity.

3-13. Attenuators. The special shunts of the preceding section are
members of a much broader class of circuits called attenuators which,
in turn, belong to the family of networks called filters. A wide variety of
resistive circuit configurations are used as attenuators such as T-section,
L-section, H-section, and lattice arrangements. These attenuators may
consist of cascaded identical sections that enable the ratio of output to
input eurrent (or voltage) to be changed by equal decibel increments,
at the turn of a switch. While the special attenuators of Sec. 3-12 are
usually adequate to meet most galvanometer needs, cascaded switchable
attenuator sections are used in many measurement applications. For
example, the attenuator may be substituted for an unknown network
and adjusted to give the same ratio of input to output current (or voltage)
as did the unknown network. Then the unknown network attenuation
must be equal to that of the attenuator. Another commonly used appli-
cation is in the measurement of the voltage gain of amplifiers. In this
case the attenuator is placed in series with the amplifier and adjusted
so that the output voltage of the series combination is equal to the input
voltage. Then the amplifier voltage gain is equal in magnitude to the
known attenuation provided by the attenuator. The advantages of these
methods of measurement are that the results are independent of the cali-
bration of the indicating devices used and depend primarily upon the
accuracy of the attenuator.

An analysis of a symmetrical T-section attenuator serves to illustrate
the principles. A single symmetrical T section is shown in Fig. 3-20,
terminated in a resistance B. The total series resistance of the T section
is R;. Tt is divided into two symmetrical parts, each of resistance R./2,
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by the shunt resistance R,. The ratio of the load current, I, to the
input current, I, is obtained immediately from the current-splitting rule.
The current-reduction factor is called the attenuation, A, in this case,
and is given by ’
I, R,

I  R:+ R+ Ry/2

For a given load resistance, R, the attenuation may be controlled by
suitable choice of B; and R,. However,
an infinite number of different pairs of
Ryand E.produce the same A. Hence,
a second condition may be imposed on
R, and R, without restricting A.

The second condition is that the input
resistance to the loaded T section shall
be equal to the load resistance, EB. This input resistance is called
the dterative impedance in general filter theory. The name is appro-
priate because the load resistance is ‘‘repeated,” in effect, at the
input of each section. This is an interesting state of affairs because it
means that the input resistance to any number of cascaded identical sec-
tions will be equal to R, since each section presents the same load resist-
ance to each succeeding section (see Fig. 3-21). Hence, the attenuation
of one section will be the same whether it is used alone or in cascade with
many other identical sections. The iterative resistance condition is

B _ B Ra(R+ Ry2)

A= (3-19)

F1a. 3-20. T-pad attenuator.

2 TRt Rt B2 (8-20)
Cross-multiply and solve for R2.
2

B =P RiR, (3-21)

When R and A are specified, the T section (or T pad) may be designed,
since R, and R, are uniquely established. Convenient equations for
design purposes may be derived by solving Eqs. (3-19) and (3-21)
simultaneously for R; and R, in terms of R and A.

_2R(1 — A) 2RA

Bi=—71% B: =g ha ==

It is interesting that the ratio R,/R; depends only upon A. The pair of
relations in Eq. (3-22) may be used to design a T section for any specified
R and A. For example, if R = 150 ohms and A = 14, which is —6 db,
then R; = 100 ohms and R, = 200 ohms are obtained from Eq. (3-22).
If two such identical sections are cascaded and terminated in B = 150
ohms, the attenuation per section remains 14, and the over-all attenu-

(3-22)
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ation is A2 = 14, or —12 db. In general, an n-section attenuator will
display an over-all attenuation A» which, in decibels, is n times the
decibel attenuation of each section. The input resistance to each of the
n~cascaded sections remains equal to the terminating resistance.

Fi1g. 3-21. Cascaded attenuators.

It is obvious from this analysis that there is a unique value of R, given
by Eq. (3-21), required for a given attenuator. If the attenuator is not
matched to the resistance R, its dial reading in decibels will be in error.
Failure to use the attenuator with the load resistance for which it was
designed is one of the common errors committed in the laboratory.

DIRECT-CURRENT METERS

When the scale of a d’Arsonval meter is calibrated directly in amperes,
the instrument is called a d-c ammeter; when calibrated directly in volts,
it is called a d-c voltmeter. A wide range of current and voltage cover-
age is possible by the use of simple external resistance arrangements, and
multirange meters may be designed easily and inexpensively. Thus, this
movement becomes a versatile and highly useful measurement tool.

3-14. Ammeters and Shunts. When the portable version of the
d’Arsonval movement with direct reading pointer and scale is used as an
ammeter, it usually employs a simple shunt (see Fig. 3-13). The shunt
may be contained inside the case of the instrument or connected directly
across its external terminals. Ammeter sensitivity may be specified in
various ways. One common and obvious designation is in terms of the
current required for full-scale deflection. This is used widely for amme-
ters with fixed internal shunts and scales marked directly in amperes,
milliamperes, or microamperes. Alternatively, the voltage drop (usually
in millivolts) across the movement required to produce full-scale deflec-
tion is sometimes specified. If the meter resistance is known, the current
required for full-scale deflection may be computed from the voltage rating.

Shunts used with ammeters may also be described in terms of the drop
across the shunt in millivolts for a specified full-scale deflection. Some-
times the resistance of the shunt is also given. For example, consider a
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100-mv 50-amp shunt designed for use with a 200-ma d’Arsonval move-
ment. The interpretation of these specifications is that when the incom-
ing current (or line current) is 50 amp, the drop across the shunt will be
100 mv and the current through the meter movement will be 200 ma
while the current through the shunt is 49.8 amp. Note that the 50-amp
rating of the shunt does not mean that it carries exactly 50 amp at
rated full-scale deflection. From Ohm’s

law, the movement resistance may be seen y7 Constant line

to be 0.1/0.2 = 0.5 ohm while the shunt current

resistance is 0.1/49.8 = 0.00201 ohm. ? jo_l
Multirange ammeters may be con- Ry

structed by providing a group of shunts 01.0

tors for different switch positions or differ-
ent terminal connections (see Fig. 3-22).
They are usually designed with the as- 0-10ma
sumption that the line into which the am-
meter is inserted has an impedance much
larger than the largest input resistance
of the ammeter. Thus, as low an input
resistance as possible is desired in ammeter design and use.

3-16. Voltmeters. When a large series resistor is placed in series with
a d’Arsonval movement, the combination is commonly called a voltmeter.
The series resistance is usually located inside the case of the instrument.
The distinction between an ammeter and a voltmeter is thus seen to be
rather fine. The principal difference is found in the input resistance to
the instrument, but both essentially measure current. The input resist-
ance of an ammeter is made as small as possible while the input resistance
of a voltmeter is made as large as possible.

Voltmeters may be rated in several ways. The voltage required across
the instrument terminals for full-scale deflection is a common designation.
Single-range voltmeters show this figure directly on the upper end of the
scale in volts, millivolts, or microvolts. Another frequently used specifi-
cation is in terms of ohms per volt. This is an indirect way of specifying
the fixed internal series resistance, whose value is given by the product
of volts required for full-scale deflection times the ohms per volt rating.
It should be emphasized that the internal series resistance is fixed for a
given range and does not vary with the volimeter reading on that range.
The reciprocal of the ohms per volt rating is equal to the current in
amperes required to produce full-scale deflection. The total resistance
of the voltmeter is also sometimes specified. This resistance, in combi-
nation with the full-scale current rating of the movement, gives the volt-
age required for full-scale deflection.

that give specified current-reduction fac- Rp,=68
R3 Ry 10

Frg. 3-22. Multirange ammeter.
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Multirange voltmeters may be constructed by providing a group of
different series resistors each of which provides a different voltage require-
ment for full-scale deflection. In some designs, a single resistor with
multiple taps is used. The range of the voltmeter may be changed by a
switch or by use of separate terminals for each range. Such voltmeters
are designed with the assumption that the impedance looking into the
two circuit points to which the voltmeter is connected is much smaller
than the smallest input resistance to the voltmeter. Thus, a voltmeter
with the highest possible input resistance is desired in voltmeter design
and use.

3-16. Applications of Thévenin’s Theorem. Thévenin’s theorem is
particularly useful in analysis of circuits when the current or voltage of
a given circuit branch is sought, or
when the effect on the circuit of inser-

050 tion or withdrawal of a circuit element
375Q 5640 (such as a meter) is desired. In

oy taking inventory of the various
’1\}.\()/2# . ¢ methods of approach to circuit prob-

lems, Thévenin’s theorem should al-
ways be considered. It is frequently
a timesaver. However, certain tech-
niques and facility with this method are necessary to exploit the theorem
fully.

Two examples of the application of Thévenin’s theorem are presented
here. Additional problems at the end of the chapter should be solved
to obtain practice with the method, and to obtain a good working
knowledge of the theorem.

Fic. 3-23. Illustrating an application
of Thévenin’s theorem.

Ezample 1. In the circuit shown in Fig. 3-23, what change in current will occur in
the 56.4-ohm resistor when a milliammeter with a resistance of 7.8 ohms is inserted at
point X? What will be the reading on the milliammeter, assuming no error in its
calibration?

Solution: Remove the 56.4-ohm resistor from the circuit and designate the broken
connections as terminals 1-2 of the Thévenin equivalent circuit to be found. Analysis
of the circuit to the left of terminals 1-2 discloses, by the voltage-divider rule, that
the open-circuit voltage is

_ 37.5(1.2)
~11.0 +0.5 4+ 375

The input resistance, R, is obtained as the parallel combination of 37.5 ohms and
(11.0 + 0.5) ohms, replacing the 1.2-volt emf by a short circuit.

_ 37.5(11.5)
=375 + 115

When the 56.4-ohm resistor is reconnected to terminals 1-2, the current in it will be
I = E,/(R; + 56.4) = 14.1 ma. When the meter of 7.8 ohms resistance is added,

E, = 0.92 volt

R; = 8.8 ohms
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the current will be I’ = E/(R; + 56.4 4- 7.8) = 12.6 ma. Thus, the decrease in
current resulting from insertion of the milliammeter is 14.1 — 12.6 = 1.5 ma, and
the meter will read 12.6 ma.

Ezample 2. The voltage between output terminals 1-2 of a certain d-c circuit is
precisely 120 volts with no external connections. When two accurate 0 to 100-volt
voltmeters, A and B, are connected in series across terminals 1-2, voltmeter A4 indi-
cates 60 volts and voltmeter B indicates 48 volts. Voltmeter A is a 500-ohm-per-volt
instrument but the resistance of voltmeter B is not specified. What will voltmeter B
indicate when it is connected alone across terminals 1-2?

Solution: Represent the network behind the two terminals by a d-c emf, E, in series
with a resistance, R. Evidently, E, = E = 120 volts. The resistance of voltmeter
A is R4 = 500 ohms per volt X 100 volts full scale = 50,000 ohms. The ratio of
resistances of voltmeters A and B must be the same as the ratio of voltages across
them when they are series-connected; hence, R4/Rs = 6%s, whence Rp = 40,000
ohms. Thus, the total resistance of the two voltmeters in series is 90,000 ohms with
a total drop of 60 4 48 = 108 volts. By the voltage-divider rule, it follows for the
series-connected case that 108 = 120(90)/(90 + R), whence R = 10 kilohms. With
E and R known, the fraction of the 120 volts that will appear across voltmeter B (of
Ry = 40,000 ohms) when it is connected alone is easily found to be 40,000/50,000.
Hence, voltmeter B will read (44)(120) = 96 volts.

PROBLEMS

8-1 (§3). A long straight conductor carrying a current 7 = 10 ma is located in a
uniform magnetic field B = 0.1 weber per sq meter. The angle between a current
element ¢ ds of the conductor and the vector B is 20°, What are the magnitude and
direction of the force per unit length exerted on the conductor? )

8-2 (§5). An n~turn circular coil of radius R is located in a uniform B field and
oriented so that the component of B normal to the plane of the coil is zero. If a
current, ¢, is passed through the coil, determine an expression for the torque acting
about a coil axis that is perpendicular to B and in the plane of the coil.

3-3 (§6). If a current, I, of K amp (where K is the instrument constant) is passed
through a galvanometer whose law of deflection is I = K6/cos 6, what will be the
angle of rotation, 6, of the movement?

3-4 (§7). A mirror galvanometer employing a telescope and scale has a uniform
field throughout the region occupied by the coil. It is used with either of two zero-
center scales, a straight scale or a curved scale with radius of curvature 1 meter;
both scales are used with their centers a distance 1 meter from the mirror, in a direc-
tion perpendicular to the uniform field. Express the galvanometer current, I, in
terms of the deflection in millimeters, d, for each case, and show that for small deflec-
tions the departure from a linear relationship I = Ad (where A is a constant) when
using the straight scale is —34 times the departure from linearity when using a
curved scale. Hint:

p2rtl

tan~lz = E( 1)’2 T

8-5 (§8). A d’Arsonval mirror galvanometer employing a telescope and scale has a
uniform radial field throughout the region occupied by the coil. It is used with either
of two zero-center scales, a straight scale or a curved scale with radius of curvature D.
Both scales are used with their centers a distance D from the mirror, and both scales



70 ELECTRICAL MEASUREMENT ANALYSIS

show a reading of zero for zero coil current. If each scale is graduated with the same
divisions, find the angle of rotation, 6, of the movement that gives a reading on the
straight scale which is 1.2 times that on the circular-arc scale.

3-6 (§8). A d’Arsonval mirror-type wall galvanometer is to be designed for use
with a straight scale such that the deflection on the scale is some constant times the
coil current (a uniform scale). This is to be accomplished by suitable design of the
permanent magnet such that the magnetic field in which the coil is located is radial
but deliberately nonuniform in a manner that
produces the desired result. Specify the equa-
tion for the magnitude of B as a function of the
angle of twist, 8, of the coil. Would it be prac-
tical to produce such a field in an actual
instrument?

3-7 (§9). A mirror galvanometer employing
a scale distance D = 50 cm has a coil resistance
of 50 ohms and requires an external shunt of
100 ohms for critical damping. When a current
of 10 pa is applied to the critically damped in-
strument, a deflection of 3 mm is produced. Compute the current sensitivities Sy
and 8;, the voltage sensitivities Sy and Sy, and the megohm sensitivity.

3-8 (§9). Will the following changes in a d’Arsonval mirror galvanometer with a
uniform radial field increase, decrease, or not affect its megohm sensitivity? (a) An
increase in the distance between scale and mirror. (b) An increase in the flux density
produced by the permanent magnet. (¢) An increase in the stiffness of the suspension
wire. (d) An increase in the number of turns on the coil. (¢) An increase in the
moment of inertia of the moving system.

8-9 (§9). A mirror galvanometer is connected in a series circuit of 100 ohms resist-
ance (including galvanometer resistance), and yields a deflection of 10 cm on a scale
(one division = 1 mm) located 50 cm from the mirror, when 50 uv is applied to the
circuit. (a) Calculate the megohm sensitivity of the galvanometer. (b) Through
what angle does the mirror rotate when 0.03 pa is passed through this galvanometer?

3-10 (§9). A galvanometer is tested in the circuit shown in Fig. 3-24. When
R; = 450 ohms, the deflection is 150 mm. When R; = 950 ohms, the deflection is
75 mm. Find the resistance and current sensitivity of the galvanometer. E =15
volts, RB; = 1.0 ohm, R: = 2,500 ohms.
~ 8-11 (§9). The megohm sensitivity of galvanometer A is 20 megohms and the
current sensitivity of galvanometer B is 0.1 X 107¢ amp /div. Readings on A can be
estimated accurately to + 34 division and readings on B can be estimated accurately
to +0.2 division. Which galvanometer allows the more precise measurements?

3-12 (§10). Design a switchable set of three simple shunts for a galvanometer of
resistance R, = 100 ohms and current sensitivity 10 mm, so that current sensitivities
of 5 mm, 1 mm, and 0.1 mm are available. Assume that the current will always be
supplied from a circuit of internal resistance far in excess of 50 ohms.

3-13 (§10). Why is a shorting-type switch desirable to use in the shunt arrange-
ment of Fig. 3-157

8-14 (§10). The current sensitivity of a shunted galvanometer (considering the
shunt an integral part of the instrument) is given by

—

Fic. 3-24. Circuit for measuring
galvanometer sensitivity.

_2+ 0.02R,

S .

where S is the sensitivity of the instrument in microamperes per scale division, and
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R, is the resistance in ohms of the shunt connected directly across the galvanome-
ter terminals. The source impedance is assumed to be very much larger than R,.
(@) What is the current sensitivity of the galvanometer when no external shunt is
employed? (b) What is the current sensitivity of the instrument when a 200-ohm
shunt is employed? (c) What is the resistance of the galvanometer itself?

3-156 (§11). The galvanometer in Fig. 3-17 has a resistance of 100 ohms and an
undamped current sensitivity of 0.06 mm. It is to be critically damped with the
Ayrton shunt shown. The required value of critical-damping resistance is B. = 500
ohms. Specify the resistance between switch taps such that the galvanometer circuit
has three sensitivities in the ratio 1:10:100. What is the maximum current sensi-
tivity of the shunted instrument?

3-16 (§11). The current, I, is delivered to the Ayrton shunt of Fig. 3-17 from an
emf, E, in series with a resistance B = 500 ohms, rather than from a high-impedance
source. Using the numerical values provided in Prob. 3-15, including resistance
values given in the answers, determine the ratios of the galvanometer currents for
the three switch positions.

3-17 (§12). The output current of a d-c generator of internal resistance 10 ohms
is to be measured with a d’Arsonval galvanometer of coil resistance 90 ohms, which
requires a 280-ohm shunt for critical damping. What values and arrangement of
two resistors may be inserted between the generator and the galvanometer to yield
critical damping as well as a galvanometer current that is exactly one-tenth the cur-
rent drawn from the generator?

8-18 (§13). Verify Eq. (3-22).

3-19 (§13). Plot the pair of design curves R;/R and R:/R vs. A for a symmetrical
T-pad attenuator. At what value of 4 is Ry = R,?

3-20 (§13). A symmetrical T-pad attenuator is designed to produce 3-db attenu-
ation when used with a load resistance B = 1,000 ohms. What is the actual attenu-
ation when this T pad is mistakenly used with a 2,000-ohm load?

3-21 (§13). Design a two-section, symmetrical T-pad attenuator for use.with a
500-ohm load so that attenuations of 1.5 and 3.0 db are available, What is the
over-all attenuation of the two sections when erroneously used with a 600-ohm load?

3-22 (§14). A 0.1-amp 50-mv shunt is designed for use with a 50-mv, 1-ma move-
ment. (a) What per cent error in the current reading will result if this shunt is used
with a 50-mv 10-ma movement? (b)) What should be the resistance of a 0.1-amp
50-mv shunt for a 50-mv 10-ma movement?

3-23 (§14). A shunt of unknown resistance and two ammeters are used to measure
a constant current. Ammeter A has a range 0 to 10 amp, and a resistance of 0.0025
ohm; ammeter B has a range 0 to 5 amp, and a resistance of 0.005 ohm. When
meter-4 is connected in parallel with the shunt it Teads 7.54 amp. When meter B is
connected in parallel with the shunt (4 having been removed), its reading is 4.16 amp.
What is the constant current?

3-24 (§14). A 0 to 10-ma d-c meter has an internal resistance of 6 ohms. It is
converted into a multirange ammeter by means of the shunt arrangement shown in
Fig. 3-22. (a) What values of R,, R,, and R; are required to obtain full-scale meter
deflections for line currents of 0.1, 1.0, and 10 amp at the switch settings shown?
(b) What is the maximum power dissipation that each of these three resistors is
required to sustain under normal meter-reading conditions?

8-25 (§14). A set of 50-mv shunts designed for use with a 40-ma movement includes
the following sized shunts: 100-amp, 5-amp, 1-amp, and 0.5-amp. (a) What is the
per cent error on each range in the readings of a 10-ma 50-mv movement used with
these shunts? (b) What resistance may be connected directly in series with the 10-ma,
movement if it is to read correctly with the 1-amp shunt? (The shunt is to be con-
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nected across the series combination of resistor and movement.) (c) What resistance
must be shunted across the 10-ma movement and 1-amp shunt if the meter is to read
correctly ?

3-26 (§14). Two ammeters, designated by 4 and B in Fig. 3-25, are used in parallel
to measure a current of 26 amp. The resistance of the wires used to make the parallel
connection is not negligible, however, and it is found that the division of current
between the two meters is therefore different for the two connections shown. Meter

O, (®
NN\~
e o i 4800 ©
15 amp 16 amp . 24009

26 amp 26 amp

Fi1ac. 3-25. Parallel connection of ammeters. Fic. 3-26. Voltmeter measure-
ment.

readings are given on the diagram. The resistance of meter A is known to be 0.01
‘ohm. Find the resistance of meter B.

3-27 (§15). The 1,200-ohm voltmeter, V, shown in Fig. 3-26, registers 19 volts.
Find E.

3-28 (§15). Three d-¢ voltmeters are connected in series across a 120-volt d-c
supply. The voltmeters are specified as follows: voltmeter A: 100 volt, 5 ma; volt-
‘meter B: 100 volt, 250 ohms per volt; voltmeter C': 15,000 ohm, 10 ma. (a) What is
the ohms-per-volt rating of voltmeter A? (b) What is the full-scale current rating of
voltmeter B? (¢) What is the voltage rating of voltmeter C? (d) What voltage
‘does each meter read?

8-29 (§15). Two voltmeters are connected in series. Voltmeter A is rated at
100 volts full-scale deflection and has a sensitivity of 1,000 ohms per volt. Voltmeter
B has a l-ma movement and a full-scale rating of 150 volts. Voltmeter B reads
57 volts, but the pointer on voltmeter 4 is badly bent so its reading cannot be trusted.
What is the total voltage across the two voltmeters?

3-30 (§15). The Simpson Model 260 volt-ohm-milliammeter has d-c¢ voltage ranges
of 2.5, 10, 50, 250, 1,000, and 5,000 volts full scale. The meter is rated at 20,000 ohms
per volt. (a) What is the input resistance of the voltmeter on each of the above
ranges?  (b) If the least sensitive movement consistent with the above specifications
were used in this instrument, what would be its current sensitivity in microamperes
for full-scale deflection?

3-31 (§16). When the volt-ohm-milliammeter of Prob. 3-30 is attached to a linear
circuit, it reads 5 volts on the 10-volt range, and 15 volts on the 50-volt range. What
would be the reading on the 250-volt range, and what is the no-load voltage of the
cireuit?

3-32 (§16). Two accurate 0 to 25-volt voltmeters are connected in parallel across
points 1 and 2 of a linear d-c circuit. Voltmeter A reads 20 volts. Voltmeter A is a
1,000-ohm-per-volt meter and voltmeter B is a 2,000-ohm-per-volt meter. When
voltmeter A is removed, voltmeter B reads 22 volts. What will be the short-circuit
current in a wire connected from point 1 to point 2?7

3-33 (§16). A 25,000-ohm resistor is one of the elements in a certain linear d-¢
cireuit. When a 0 to 100-volt voltmeter of 500-ohm-per-volt rating is connected in
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series with this resistor, it reads 50 volts. When the same voltmeter is connected
across the 25,000-ohm resistor it reads 32.5 volts. Compute the power dissipated in
the 25,000-ohm resistor when the voltmeter is removed from the circuit.

8-34 (§16). A 60,000-ohm resistor is connected between points 1 and 2 in a certain
d-c circuit. Two accurate voltmeters are available. Voltmeter 4 is a 0 to 75-volt
meter and requires 5 ma to produce full-scale deflection. It reads 60 volts when con-
nected across the resistor. When voltmeter A is replaced by a different voltmeter B,
the reading on B is 90 volts. When both voltmeters are connected simultaneously,
voltmeter B reads 45 volts. (a) What is the voltage across the 60,000-ohm resistor
when neither voltmeter is connected? (b)) What will be the voltage across points
1 and 2 when the 60,000-ohm resistor is removed from the circuit (neither voltmeter
connected) ?



CHAPTER 4

GALVANOMETER DYNAMICS

Knowledge of the laws and circuits governing static deflection of galva-
nometers and d-c meters is useful but by no means represents a balanced
understanding of this remarkable movement. It is frequently necessary
to comprehend the more difficult problem of motion of the suspended
coil, thus obtaining a fuller appreciation of uses and limitations of galva~
nometers. Fundamental principles on which dynamic behavior of galva-
nometers is based are presented in this chapter along with representative
solutions.

The study of galvanometer dynamics is highly instructive and valuable
to the engineer since it involves the behavior of an electromechanical
system. The value of the analysis resides perhaps more in the concepts
and methods of formulating and interpreting equations of a moderately
complicated system, than in specific solutions and information concern-
ing galvanometers. As such, it is hoped that the student will join in the
challenge with vigor; the thinking and methods employed here are too
often encountered in engineering problems to be passed over casually.

4-1. Transient Response. The transient response of d’Arsonval move-
ments is a matter of considerable practical interest. To illustrate, sup-
pose a battery of emf, E, in series
with a resistance, R, isused to ener-
gize a uniform-radial-field move-
ment as shown in Fig. 4-1. If the
coil is initially at rest at an angular
deflection 6 = 0 with the switch
open, and then the switch is closed
at time ¢ = 0, the resulting angu-
“W lar motion of the coil may follow

R E several patterns. The coil may

NN TIII_F. turn very slowly and sluggishly,

Fre. 4-1. Circuit for actuating a galva- creeping gradually up to the final

nometer. (steady-state) angular deflection,

0., corresponding to the steady current I = E/(R+ R,). Orit may

twist rather briskly and settle quickly at 6, without ever going
74
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beyond 6;,. Or it might undergo rather violent motion, swinging well
beyond 6, initially and oscillating back and forth over a prolonged period
of time but with diminished amplitude about the value 6,. These possi-
bilities, portrayed graphically in Fig. 4-2, are readily demonstrated in the
laboratory. They show the significance of the problem and give some
suggestion of its complexity.

» Oscillatory (underdampedy)

0 /\ T
s

S~
= — —
=]
E i \7
ko]
2 -
5 "
A - Critically
£ N damped
Overdamped
1 [} 1 ! 1 1 1 L ] ! ] 1 1 [
0 Time, ¢

F1a. 4-2. Modes of galvanometer behavior.

The mode of behavior is determined by a number of factors inherent
in the d’Arsonval movement such as the instrument constant, K, the
moment of inertia, J, of the suspended system, and the air damping of
the moving coil. But, interestingly enough, the value of the external
resistance, R, also has a pronounced effect on dynamic behavior, as will
be shown. Thus, the transient performance is, to some extent, within
control of the user of the instrument.

In some applications, the desired behavior is similar to that shown in
the critically damped curve of Fig. 4-2, which represents attainment of
steady deflection in least time without overshoot. This mode of oper-
ation usually can be produced by suitable choice of R. Critical damping
is desirable to achieve in sensitive galvanometers because undue sluggish-
ness or prolonged oscillation may waste many seconds of time while
waiting for the deflection to settle at 6,.

4-2. Differential Equation of Torques. A mathematical description
of the angular motion of the galvanometer coil may be found by recourse
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to the classical-mechanics subject called ‘‘dynamics of rigid bodies.”
The basic equation applying to such motion is

dH
e (4-1)

where T is one of N external torques acting on the body, and H is the
angular momentum of the body. The fact that the resultant external
torque about any point is equal to the time rate of change of angular
momentum about that point follows from Newton’s laws of motion. It
will be recalled that the sum of all external forces, f, acting on a body
is equal to the time rate of change of linear momentum of the body,

N

_ d(mv)
2 b= "

k=1

The angular-momentum vector, H, is quite involved in the general
case, but collapses to a very simple form for the galvanometer coil. The
coil is assumed to be a rigid body so constrained that it has only one
degree of freedom, pure rotation, and an axis of rotation coincident with
the axis of symmetry of the coil. In this case, H has only a single com-
ponent, directed along the axis of rotation, given by H = J dé/dt. J is
the moment of inertia of the moving system about its axis of rotation,
and 6 is the angular displacement of the coil, defined in Chap. 3. The
time derivative of 8 is, of course, the angular velocity of the coil.

For the galvanometer, each contribution, Tk, to the resultant external
torque has a component only along the axis of rotation. There are at
least three separate constituents of the resultant external torque.

3
E Te=T—T, — T, (4-2)
k=1

The applied torque, T, results from the interaction of the galvanometer
current with the magnetic field, B, in the air gap. The restoring torque,
T,, is provided by the suspension. The restraining torque, T, results
from air resistance to coil motion. The last two torques act in opposition
to the applied torque; hence, the negative signs. The restoring torque
was specified in Chap. 3, T, = 86, where S is the spring constant. For a
uniform-radial-field instrument, the applied torque was also seen to be
T = nBiA, for any  within the working range. Note that in T the
steady current, I, of Chap. 3 has been replaced by the instantaneous
current, 4, which varies with time during the transient. Restraining
torque owing to friction has been neglected in Eq. (4-2), an acceptable
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omission in the case of mirror galvanometers employing filamentary sus-
pensions. However, in instruments employing pivoted coils, the bearing-
friction torque is often a significant factor.

Thus, the equation of torques that must be satisfied in this case is

d [ do\ _ , d
T—T,—Ta=%<Jat—)—JW (4-3)

It is assumed in Eq. (4-3) that J is constant, which is well justified for
filamentary suspensions, but subject to some small error in the case of
spiral-restoring springs. Changes in spring shape under rotation con-
tribute small variations in J. But the spring mass is usually small com-
pared with the mass of the coil, so even this effect may be negligible.
Incorporate the expressions for T' and T, into Eq. (4-3), recalling that
the instrument constant, previously defined, is K = S/nBA, and the
torque equation becomes
2
T 4T+ 80 =B (4-4)
The expression generally used for the torque owing to air damping, T,,
is based on the somewhat questionable assumption of viscous damping,
which by definition means that 7', is proportional to the angular velocity
of the coil. Hence, D, d6/dt may be used as an approximation for T,,
where D, is a constant of proportionality called-the air-damping coefficient.
The degree to which this approximation is applicable to the system is
usually not eritical. Air damping frequently represents a small portion
of the total damping of the moving coil, the bulk of which is often trace-
able to a magnetic braking effect that will be analyzed in the next section.
Damping is accomplished in many instruments by a metallic frame on
which the coil is wound. Eddy currents, set up in this frame when the
coil moves, produce a damping torque. Frame damping is neglected in
this entire chapter.
Substitution for T\, yields the following differential equation of torques:
d S .
J W E (]
This equation cannot be solved immediately since the current, ¢, is some
function of 6, yet to be determined. Only a portion of the total instan-
taneous current appearing in Eq. (4-5) is an independent driving func-
tion. This is because the motional emf, induced in the coil as a result of
its movement through the magnetic field, depends upon 6 and, of course,
influences <.
4-3. Differential Equation for Current. The equation for instantane-
ous current in the galvanometer coil may be determined by analyzing the

+ D, gg + 86 = (4-5)
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circuit of Fig. 4-3, which shows the electrical portion of Fig. 4-1. It
should be recognized that there is no loss in generality in considering a
voltage, E, in series with a resistance, R, applied to the galvanometer.
Thévenin’s theorem shows that any linear d-¢ network may be placed in
this form. In the circuit of Fig. 4-3, R,, represents the resistance of the
coil, L,, its self-inductance, and e, the motional emf induced in the coil
when it moves through the magnetic field. When the switch is closed,
Kirchhoff’s voltage law yields

di

E_em=z(R+Rm)+LmEt

(4-6)

The algebraic sign associated with e, follows from Lenz’s law, which

states that the induced emf must have a polarity such as to oppose the
cause that produced it. Hence, as ¢
increases from zero, e, must act in
opposition and tends to reduce the net
emf acting on the circuit. With the

L, sign established, only the magnitude
of e, need be found.

In many practical galvanometers,
the self-inductance of the coil is so
small that it is a good approximation
to neglect the term L., di/dt. 1t will

be shown subsequently that 7 cannot change instantaneously, even
with L., neglected, because of the motional emf, e,.. Neglecting L., leads
to a considerable simplification by eliminating the derivative of the cur-
rent from Eq. (4-6). Accordingly, it is assumed that L., = 0.

The effect of the motional emf may be quite pronounced, despite neg-
lect of the L., di/di drop. As an extreme example, suppose the galva-
nometer coil is swinging from some sizable deflection back toward zero,
and a short circuit is suddenly placed across the coil terminals. The coil
will suffer a sudden deceleration (especially if R,, is small) which may be
so abrupt that the coil becomes virtually frozen in angle. This magnetic
braking may be understood qualitatively by observing that the short-
circuit current produced by the motional emf yields a torque opposing
the coil motion. The smaller the R,, the larger the current and the
associated torque. When the coil tends to move, it “ cuts its own throat”
by generating an e,, that counteracts the motion. This damping effect is
useful in practice. By appropriate manual manipulation of a shorting
switch, a galvanometer oscillating about zero may be ‘‘clamped” by
closing the switch just before the coil angle passes through zero. The
net effect of this technique is to reduce the time required for the instru-
ment to stabilize at a zero reading. It is also standard practice to short-

L]
S Rm

T-E

Motional emf

em

Fic. 4-3. Galvanometer circuit.
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circuit the galvanometer terminals when moving the instrument to pre-
vent excessive coil motion and possible damage.

The magnitude of the motional emf may be determined from the basic
force law using the definition of emf

e = fg-ds @7

The emf, e, is the line integral around a closed path of the force per unit
charge. The vector ds represents an element of path length. Because
f - ds represents work, ¢ may also be regarded as the line integral of the
work per unit charge around the closed path.
Divide the basic force law, given in Eq. (3-1), by ¢ and insert the
result into Eq. (4-7).
e= $E&+vXB)-ds

This may be broken into the sum of two separate line integrals
e= g&-ds + Fv X B-ds

the first of which is zero, since the line integral of any electrostatic field
around any closed path is zero. The remaining line integral is the
motional emf.

en = v X B-ds (4-8)

The line integral in Eq. (4-8) may be evaluated for the n-turn galva-
nometer coil moving with radial velocity v in the uniform radial field, B,
shown in Fig. 4-4. For every element
ds of those portions of the coil that
lie in B, it may be seen that v and B
are mutually perpendicular and con-
stant at a given instant of time.
Hence, v X B has a magnitude vB and
an upward direction along the left
side of the coil in Fig. 4-4, and down-
ward along the right side. This means
that forces owing to motion of the
coil act along the wire on charges
inside the wire, and in the same sense
in going completely around all n
turns. The line integral path around
one turn includes the distance 2L plus
some remaining path length along
which B is zero, if fringing is neglected. Since v X B has the same
direction as every ds along this effective path length 2L, the dot product
in Eq. (4-8) does not yield a trigonometric term. However, the algebraic

Fic. 4-4. Illustrating motional emf.
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sign of the product depends upon whether ds and v X B have the same
or opposite sense, and depends on the direction of line integration. But
the sign of e, has already been established in Eq. (4-6). The magnitude
of the motional emf for one turn is seen to be vB(2L). Therefore, for
n turns

en = 2nBLv (4-9)

The result in Eq. (4-9) may be deduced, perhaps in a less satisfying
manner, by a suitable interpretation of Faraday’s law:

. dd
induced emf = — T

where @ is the magnetic flux in webers. One filament, of effective length
L, of one coil side moving with radial velocity » = dz/dt sweeps out an
area da = L dx in a time dt. Hence, da/dt = L dx/dt = Lv. With B
constant and normal to da, the flux cut in time d¢ is d® = Bda. There-
fore, the magnitude of the induced emf in one filament is
d® da

But there are 2n such filaments, each of effective length L and each with
aiding induced-emf polarity. Therefore, the magnitude of the total
induced emf is 2nBLv, in agreement with Eq. (4-9).

The motional emf may be expressed in terms of 6 by noting that
dx = (W/2) db, where W is the total width of the coil. Hence,

dr _, _ Wb
@' T 2 d
and using this velocity in Eq. (4-9),
W dé dg S do

where K = S/nBA is the instrument constant, and A = LW is the effec-
tive coil area. Insert this result into Eq. (4-6), with L, = 0, and the
desired functional relationship between ¢ and 6 is obtained.

iR+ Ry =B 5D (@-11)
Substitute this expression for ¢ into Eq. (4-5).

aze do S E S2 do
Jgg T Pagg 80 = KR TR, KR+ Rl

For a more manageable result, collect the two df/dt terms and define the
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damping coefficient
S 2

D=D.t+ mm TRy

(4-12)
which consists of air damping plus circuit damping owing to e,,. When
6 has reached a steady value, d6/dt = 0 and ¢, = 0. Then, the direct
current in the coil is, from Eq. (4-11),

E
Finally, using D and I, the torque equation to be solved for 6 becomes
d2e de S
JW—I—D%-FSG—KI (4-14)

4-4. General Solution of Torque Equation. Second-order linear differ-
ential equations with constant coefficients, such as Eq. (4-14), occur pro-
fusely in engineering analysis. An example familiar to the reader is Eq.
(2-3) for the mesh current in the series RLC circuit shown in Fig. 2-2a.

di | — _
La—t—l—Rz—l-C,/zdt—e(t) =FE
With ¢ = dg/dt, this becomes

E

d*q dg | ¢
Lae TR +¢
This has exactly the same form as Eq. (4-14). Evidently, the analogy
between the electric circuit quantities and the electromechanical galva-
nometer quantities is

Galvanometer............ 0 J D N SI/K | de/dt
Series RLC circuit........ q L R 1/C E I

This analogy helps to anticipate and understand the galvanometer
results in terms of the familiar. For example, the effect of D in the
galvanometer is analogous to that of R in the series circuit ; 8 and ¢ are
analogues; and it may be expected that there will be a counterpart to
the series-circuit resonance frequency wo = 1/4/LC in the form of V/'S/J,
replacing L by J and C by 1/8 in wo. The student is urged to pursue
this analogy, but it will not be referred to specifically in the transient
development that follows.

The general solution of any linear differential equation with constant
coefficients consists of the sum of a steady-state term (particular integral)
and a transient term (complementary function). It must contain arbi-
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trary constants equal in number to the order of the differential equation.
The arbitrary constants may be evaluated from the boundary (initial)
conditions in any particular case. For a constant right member, as in
Eq. (4-14), the steady-state term is obtained simply by imposing that
the independent variable be constant. The transient term is the solu-
tion of the homogeneous equation, defined as the equation resulting from
setting the right member equal to zero.
Accordingly, the general solution of Eq. (4-14) must be in the form

6 = 0, 1+ 6,

where 6; is the transient term that eventually goes to zero as ¢t approaches
infinity, and 6, is the steady-state term, the final value of 6 attained as
6; approaches zero. The steady-state term is obtained by imposing
6 = 6, = constant, whence df/dt = 0 and d*0/di? = 0. Then Eq. (4-14)
becomes S8, = SI/K or

E

I
b=k = K® T E (4-15)

This is the static law of deflection deduced previously in Eq. (3-13), a
comforting consistency.
The transient term is a solution of the homogeneous equation

de;

2
JM+D7E+S¢9¢=0 (4-16)

dt?

and is known to be expressible in exponential form. Hence, a solution
6, = Aert, where A = constant, will apply provided p is chosen properly.
To find acceptable values of p, insert 8, = Ae? into Eq. (4-16) with the
result

Aer'(Jp? + Dp + 8) =0

This equation must be satisfied for all . The solution A = 0 is trivial
since 8; = 0 obviously satisfies Eq. (4-16), but is of no interest. Simi-
larly for the solution p — — «. Hence, suitable values of p are given by
the solution of the so-called characteristic equation, Jp? + Dp 4+ 8 = 0.
The quadratic formula yields two roots

P = —a'l‘daz—; P2 = —a — a2—§ (4-17)

where « = D/2J. When p; and p. are not equal, it is evident that either
6, = Aer or 6, = Ber*, where B is a constant different from A, will
satisfy Eq. (4-16). The sum of these two solutions must also satisfy
Eq. (4-16) because of its linearity. Therefore, §, = Ae”* + Be* is the
transient solution containing the requisite number of arbitrary constants
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for a second-order equation. Thus, the general solution of Eq. (4-14) is
6 = 0, + Aertt 4 Bere P1 % D2 (4-18)

where 6, is given by Eq. (4-15).
On the other hand, if p, = p» = —a, which occurs when D?/4J2 = S/J,
6; has essentially one arbitrary constant because 6, = (A + B)e.
Hence, 6, is not complete in this singular case. The complete transient
term may be squeezed out of the form used for p, = p. by setting
p: = p1 + A, and allowing A to approach zero. :
6; = lim (Aet 4+ Berst) = Al\in% [et(A 4+ Bebt)]

propi

Use the series expansion for € and remove the factor .

o,=ewlim{A+B[1+At+(ATt,)2+ . ]l

a0
Discard all terms in (Af)? and higher order in passing to the limit.
05 = éplt(C + Gt)

where the constants C = A + B and G = BA are chosen to be finite as
A — 0. Hence, the general solution of Eq. (4-14) for the case of equal
roots is

0 =0,+ Cet + Gle=t Pr=P2= —a (4-19)

4-5. Boundary Conditions. The constants appearing in the general
solutions of Eq. (4-14) are arbitrary in the sense that they may have any
finite values without invalidating the solution. However, they are not
arbitrary in any given system where unique and unambiguous conditions
of operation are specified. These conditions pertain to relations between
6 and ¢ and are called boundary conditions. If they are specified at the
onset of the transient they are sometimes called initial conditions. Two
examples of the application of different initial conditions to the general
solution will be developed to illustrate the procedure for evaluating arbi-
trary constants. Two independent conditions are required to evaluate
the pair of arbitrary constants. The two conditions must be independ-
ent, for if one can be derived from the other via the relationship between
6 and ¢, then only one of the arbitrary constants may be evaluated.

Ezample 1. Zeroed Inert Coil. Suppose the two initial conditions specified at
t =0ared = 0anddé/dt = 0. This is the case of a zeroed galvanometer whose coil
is stationary prior to closing the switch in Fig. 4-1. It may be seen intuitively that
these two conditions are independent, for the initial reading of the galvanometer may
be made independent of the initial angular velocity of the coil. For instance, suppose
that the coil is swinging freely under open-circuited conditions and that the switch is
closed at the instant ¢ is passing through zero. Then 6 = 0 at ¢ = 0, but d6/dt is not
zero. Contrariwise, the coil might be at rest at ¢t = 0, but adjusted to have some fixed
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angular displacement different from zero. Then, d6/d¢ = Oatt = 0, but 6 is not zero.

An analytical test for independence of the two conditions is the demonstration
that the pair of arbitrary constants become established unambiguously upon applica-
tion of the conditions. Consider the case of unequal roots. Imposing 6 = 0 at
t =0 on Eq. (4-18) yields 0 = 6, + A + B. Imposing d8/dt = 0 at ¢ = 0 yields
0 = Ap; + Bps. Thus, two independent equations in A and B are obtained. When
solved for A and B and inserted into Eq. (4-18), the result is

pze"l‘ p16p2‘ )
1 _Pie®
( -I- — 7 Pz - P1 #P2 (4-20)
In the case of equal roots, imposing @ = 0 at ¢ = 0 on Eq. (4-19) yields 0 = 6, 4 C.
Imposing d6/dt = 0 at ¢t = 0 gives 0 = —aC 4 G. Hence, the arbitrary constants
are determined: C = —6,, G = —a#f,. Equation (4-19) becomes

0 = 0,(1 — e — ate ™) P11 =P = —a (4-21)

There is nothing arbitrary about the results for ¢ in Eqs. (4-20) and (4-21) which are
now specified completely in terms of the parameters of the system J, D, S, K, E, R,
and Rn.

Ezxample 2. Return to Rest from Steady Deflection. Suppose the switch of Fig. 4-1
has been closed for a long time so that ¢ has attained the steady value 6,, and the coil
velocity is zero. Then a resistance, Ri, is suddenly placed across the galvanometer
terminals at £ = 0. The initial conditions are § = 6, and d8/dt = 0 at ¢ = 0. It
would be incorrect to insert these initial conditions into the solutions that have been
developed, because Eq. (4-14) contains the term I = E/(R + R.), which pertains to
the circuit arrangement of Fig. 4-1. In the present case, the final steady-state current
drawn from Eis I; = E/(R + R,) where R, = RiRn/(R: + Rx), and the steady-state
current through the galvanometer after it finally comes to rest at its new deflection
will be I' = RiI1/(R: 4+ R») (using the current-splitting rule) rather than I. Evi-
dently, Eq. (4-14) may be used if I is replaced by I’, and if ¢ is interpreted as the
instantaneous value of @ starting at the instant R, is introduced. Then, for the case
of p1 % ps, imposing 6 = 6, at ¢ = 0 on Eq. (4-18), with I replaced by I’, yields
6, =1I'/K + A + B. Imposing d8/dt =0 at t = 0 yields 0 = Ap, + Bps. Solve
for A and B and insert into Eq. (4-18).

P1t €Pat I
( ) (pfzi 1p1 pfg - zpz) +x mFEP (422

It may be readily verified that, for a > 0, this result yields 6 = 6, at ¢ = 0, and

= I'/K ast— . If the added shunt resistor, R, is zero, or if R — « (switch of
Fig. 4-1 opened), then I’ = 0. Therefore, the coil returns from ¢ = 6, to a zero
deflection, because p1 and p: each have negative real parts.

4-6. Nonoscillatory Solutions. There are three possible forms for the
roots p; and ps, depending upon the size of D? relative to 48J.

1. If > > S/J (D? > 48J) then p; and p; are unequal, real, and nega-
tive since 4/a® — (S/J) is not zero and is smaller in magnitude than a.
In this case, p1 = —a + fand p» = —a — B, where 8 = vV — (S/J).

2. If a2 = S8/J (D? = 48J) then p; and p; are equal, real, and nega-
tlve P11 =pP2= —a.

3. If a2 < 8/J (D? < 48J) then p; and p. are conjugate complex
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numbers. In this case, py = —a + jo and p: = —a — jw, where
w=/(8/J)— a® = jB. ,

The first two possibilities correspond to the overdamped and critically
damped cases, respectively. In the overdamped case, the deflection, 6,
is given as a function of time by Eq. (4-18) with py = —a + 8 and
p2: = —a — B. These are both real numbers calculable from D/J and
S/J using Eq. (4-17). Expressing Eq. (4-18) in terms of « and 8,

0 = 6, + (APt + BePt) (4-23)

The result for 8 in the case of an overdamped galvanometer with an
initially inert and zeroed coil is given in Eq. (4-20), which becomes, in
terms of a and g,

—at
g = 1= 55 la+ B + 6 — e (4-24)
This may also be expressed in terms of the hyperbolic functions
. P — P i o
sinh 8¢ = —5 cosh Bt = —
as follows:
0£ =1—e= (% sinh B¢ + cosh Bt) (4-25)

The result for the case of an overdamped galvanometer returning to
rest from an initial steady reading is given by Eq. (4-22). Expressed in
terms of o and B, this becomes

0=(0-%) G la+po+E -0+l @
This result also may be expressed in hyperbolic form.

0 = <0,, — %) e <% sinh 8t + cosh Bt) + % (4-27)

In the critically damped case, 0 is given by Eq. (4-19). If the coil is
initially at § = 0 and motionless, § attains the final deflection 6, in accord-
ance with Eq. (4-21).

Several examples of nonoscillatory behavior of 8 as a function of time
in the case of a zeroed, initially inert galvanometer are given in Fig. 4-5.
Because the degree of damping depends upon the size of « relative to
V/8/J, it is desirable to define a dimensionless damping coefficient, k, by

a J

For critical damping, £ = 1, and for overdamped cases k > 1. The



86 ELECTRICAL MEASUREMENT ANALYSIS [§4-7

curves in Fig. 4-5 indicate that 6 approaches 6, more rapidly for critical
damping than for overdamping. Using the definition of relative damping
coefficient in Eq. (4-28), it follows that

B = \f;:—wg = \g Ve —1 (4-29)

If k2 > 1, then 8 and « are approximately equal, but 8 is always less than
a. The relative damping coefficient, k, may also be expressed in terms of
« and B, eliminating \/S/J from Egs. (4-28) and (4-29).

J 1
P S S 4-30
3 VI - @/ay 430

4-7. Oscillatory Solution. The third possibility for the roots p; and p»
oceurs when o? < 8/J (D?* < 48J). Then p; and p; are conjugate com-
plex roots, p1 = —a + jwand p; = —a — jw. This is the underdamped
or oscillatory case, and is of most interest from a practical standpoint
because a slightly underdamped galvanometer displays a faster speed of
response than in the critically damped case. " Also, operation with a
barely visible overshoot in applications where actual scale readings are
being taken (rather than null detection) gives the observer a clue that
there is no impairment of coil movement, such as erratic frictional
interference.

In the oscillatory case it is revealing to express Eq. (4-18) in trigono-
metric form. Insert p1 = —a + jw and p: = —a — jw into the tran-
sient part of Eq. (4-18).

6, = e(Aevt + Be i)
Since e+t is complex and 6, must be real, because it represents a physical
quantity, it follows that A and B must be complex. LetA = a + jb and
B = ¢ + jd. Then use ¢t = cos wt & j sin wi.

6: = e[(a + jb)(cos wt + j sin wf) + (¢ + jd)(cos wt — j sin wt)]
The imaginary part must be zero for all .
(b + d) coswt + (@ — ¢)sinwt =0
Therefore, a = ¢ and b = —d. In other words, A and B are complex

conjugates, A = B*.
The real part of 6;, which is all that remains, is

8, = 2¢(c cos wl + d sin wt)
Express this in terms of a single trigonometric function, and add 6..

0 =6, + M sin (ot + ) (4-31)
where M = 24/ ¢ + d? and v = tan—! ¢/d. This trigonometric equiva-
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lent of Eq. (4-18), containing two arbitrary constants, M and v, shows
clearly that the transient term is a damped sinusoid.
The angular frequency of oscillation is w = 4/(S/J) — a® where
a = D/2J. Hence, the period is
2 2
=T ___ T 4-32
o~ ST - a -4
The free period is defined as the value of T with no damping (@ = 0 or
D = 0), and is smaller than 7. It is a useful theoretical quantity, but
not exactly attainable in practice because of small air damping.

To=2" = 7 _ _ o |2 ‘ (4-33)

The ratio of these periods is useful.

I /. T/ S S (4-39)
To /S/T)—a® +1—aJ/S +1-Fk
where k is the relative damping coefficient defined in Eq. (4-28) and is
less than 1 in the oscillatory case.
Other useful relations among the various parameters may be developed.
For example,

w _2r Ty [S_ Ty +/1—k
E"a_T"_ﬁ\/.;_ITT_—k_ (4-35)
and also
— S 2r «
3 2 s _ 2 -
Va®+ o \/; T, = % (4-36)

For the specific case of an initially zeroed, motionless galvanometer
energized at ¢ = 0, the initial conditions may be applied to Eq. (4-31).
[The result may also be obtained from Eq. (4-24) with 8 = jo.] Impos-
ing § =0att=0on Eq. (4-31) yields 0 = 6, + M sin v. The time
derivative of Eq. (4-31) is

de

= Me=Yw cos (vt + v) — asin (vt + )]

Imposing d6/dt = 0 at ¢t = 0 yields

0=wcosy — asiny or tan v =

Rle

Consequently,

1 —_ w _T_O_ _—oa___asT
YT Vet T w M=am=
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Thus, the result for 6 with arbitrary constants evaluated in terms of
these initial conditions is

T ., . )
0 = 0, [1 - T e sin (wt + tan™! ;)] (4-37)
1.4
| >
12 B, /_\\X
i ~ 9'/ S
1.0 /I' 0'1/ N /4——-_;=
- /// //\T/;_//
) /, / > L]
uo ’/ / / —
06 Ay y&o A
04_ / <
0 / /
0.2 ,/

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
_t
T

Fic. 4-5. Modes of galvanometer behavior.

Several examples of oscillatory behavior of 6 as a function of time in
the case of a zeroed, initially inert galvanometer are given in Fig. 4-5,
in terms of the dimensionless quantities 8/8,, /T, and relative damping
coefficient, k. These are universal curves that may be used regardless
of the specific values of the galvanometer parameters. The oscillations
are seen to become more prolonged, the smaller the k. For k approach-
ing 1 (critical damping), 8 settles to 8, more rapidly.

4-8. Speed of Response. The approach of 6 to 6, may be studied
more closely and compared analytically with the critically damped case,
by first defining the quantity

A=1-— 03 (4-38)
This is the fractional deviation of 6 from its final value 6,. The expres-
sion for A in the oscillatory case follows from Eq. (4-37).

A= %— e sin (wt + ¥) (4-39)
0

The fractional deviation for critical damping is obtained from Eq. (4-21).
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A, = (1 + a) a. > a (4-40)

where the value of o, in the critically damped case is greater than « in
the underdamped case. It may be shown that A = A, at ¢t = 0, with
sin ¥ = To/T, and this must be so because all curves of Fig. 4-5 start at
6=0,t{=0.

The ¢nitial approach of 8 to 6, is more rapid in the oscillatory case than
in the critically damped case, as indicated in the curves of Fig. 4-5. But
as time progresses, 6 crosses and oscillates about 6, and the real ques-
tion is: Does 8 get to and stay within a specified fraction of 8, at a time
earlier or later than for the same specified fraction in the critically damped
case? :

10p28—f—— -\ ——

l
I
|
|
|
|
te

Time, t
Fia. 4-6. Tllustrating speed of response.

The answer to this question is complicated by the fact that A is an
oscillating quantity. The deflection ¢ may pass through a fixed zone
about 9, many times before staying within it (see Fig. 4-5). The times,
tn, at which A is a maximum or a minimum may be found by setting the
time derivative of Eq. (4-39) to zero.

dA T
T 0= T e[w cos (wtn + v) — a sin (wt, + 7))

Therefore, ¢, must satisfy

tan(cpt,.—l—'y)=3=ta,n'y or i, = n=0,12 ...
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Consequently, at ¢ = {,, sin (wtn + ¥) = + To/T and the maximum mag-
nitude of A is obtained from Eq. (4-39).

[Am[ = ¢ @tn = ¢—anT/2 (4_41)

Now consider a prescribed zone +A, about 6/6, = 1, as shown in
Fig. 4-6. In the oscillatory case, § will enter this zone at a time ¢, < I,
and stay within this zone for all ¢ thereafter. The question is whether
A, is equal to or greater than the magnitude of A, at ¢t = {. As a very
conservative approach, the value of A, at ¢ = ¢, may be compared with
the magnitude of A,,. This is given by Eq. (4-40) with ¢ = ¢,.

A, = e (1 4 agt,) a > a (4-42)
The ratio of Eq. (4-42) to (4-41) is
A
T = ~(ac—a)ta
A € 1 4+ adtn)

and this shows that A, > |A.| at ¢ = &, if (e — @) is sufficiently small.
It follows that at time ¢, A, is even greater than the magnitude of A,
for the same difference between o, and a. Thus, it is seen that the speed
of response in the oscillatory case may be faster than in the critically
damped case.

Detailed numerical calculations based on the transcendental equations
that have been presented show that in the critically damped case, 8 devi-
ates from 6, by 10 per cent of 6, (A = 0.1) at a time equal to approxi-
mately 0.67. The shortest time to achieve this 10 per cent result in
the oscillatory case is less; about 0.47, with relative damping coefficient
k = 0.6. Tor @ to enter and stay within a +1 per cent zone about 6,
a relative damping coefficient approximately equal to 0.8 yields fastest
response, a time about equal to two-thirds of the free period, T, being
required. A longer time, very nearly equal to the free period, is required
to achieve the 1 per cent result with critical damping.

4-9. Logarithmic Decrement. The logarithmic decrement, A, is a
quantity used to describe the rate at which galvanometer oscillations die
out. It is defined by
an

A=1In
0n+1

(4-43)

and is the natural logarithm of the ratio of two successive elongations,
the nth and the (n + 1)th. An elongation is the magnitude of the maxi-
mum deviation between the instantaneous value of 6 and the steady-state
value about which # oscillates, for any given half cycle of oscillation.
Thus, an elongation is by definition a positive quantity. The definition
of \ implies that the ratio of any two successive elongations is constant,
and this will be demonstrated subsequently.

A graphical representation of the elongations, 8, and 6,41, in the case
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of a galvanometer initially at rest, is given in Fig. 4-7. It may be seen
qualitatively that if 6, is only slightly less than 6,, the oscillations are
rather prolonged and X\ is small numerically. However, if 8,,; is sub-
stantially smaller than 4., the oscillations damp out quickly and X is large
numerically. Thus, A is an inverse measure of the oscillations and a
direct measure of the damping. Smaller A means larger and more pro-
longed oscillations (less damping), while a larger A means smaller oscil-
lations of shorter duration (more damping).

First overshoot

(=3
] e e -
3 First
= undershoot
o
s
En First elongation
<

0

Time, ¢
F1c. 4-7. Tllustrating elongations.

It is possible to develop a formula for \ in terms of the galvanometer
parameters. This is worthwhile because X is conveniently measurable,
and may then be related to the galvanometer parameters whose determi-
nation is more evasive. Equation (4-31) describes the behavior of 8 with
time in the oscillatory case, before insertion of boundary conditions. The
times, {,, at which maximum and minimum values of # occur may be
found by setting the time derivative of Eq. (4-31) to zero.

Z—f = 0 = Me=to cos (wln + 7) — @ sin (wts + )]
Hence, ¢, must satisfy
tan(wtn+')/)=9=tan'y and tn=ﬂr=ﬂ’ n=20,1,2, ...
a w 2

These times are, of course, the same as those for which maximum and
minimum fractional deviations were found to occur. The maxima and
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minima are spaced equally in time and are separated by T'/2, where T is
the period.

The instantaneous value of 8, at ¢, the time of the nth elongation, is
given from Eq. (4-31) by

0, = |0 — 0] = Me*|sin (wtn + 7v)|

which could be either a maximum or a minimum. The bars signify
absolute value, which is implicit in the meaning of the term elongation.
The next elongation occurs at ¢ = ¢, + T'/2 and is also found from Eq.
(4-31).

Ony1r = MeeT2|sin (wt, + 7 + 7)|

where wT/2 = w. This elongation occurs at a minimum of 6, if 6 was a
maximum at ¢ = {,, and vice versa. The ratio of the two successive
elongations is

[

0n+1

= 2T/2 =

since the two sine terms are equal in magnitude (opposite in sign).
Therefore,
aT DT
== (4-44)
and this holds for any two successive elongations because an arbitrary
elongation at ¢ = ¢, was used in the development.

The first instant at which d6/dt is zero, which represents the first
instant at which an elongation occurs, is at ¢ = 0. However, the litera-
ture usually refers to the first elongation as the first overshoot, shown in
Fig. 4-7. But the first elongation at { = 0 is perfectly legitimate and
may be used to determine . For an initially inert galvanometer, the
first elongation at ¢ = 0 is equal to 6,. The gecond elongation is 8, — 0.,
where 6,, signifies the maximum value of 6, and it occurs at ¢t = T/2.
Hence,

08
Om — 05
This states that A is the natural logarithm of the final deflection over the
first overshoot. Similarly, if the current is suddenly removed at ¢ = 0
from a galvanometer which has an initial steady reading, \ is given by
the natural logarithm of the ratio of the initial steady deflection to the
first undershoot. It also follows from Eq. (4-45) that the maximum
fractional overshoot, occurring at ¢ = T/2, is

A=1In (4-45)

Om — 0s = N = ol/2
0.

This result is consistent with Eq. (4-41) with n = 1.
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Another formulation for A is based on the property demonstrated in
Eq. (4-44) that ratios of successive elongations are constant.

O 0’"+1 — e e — 0n+r—1

n42 0n+r

>

en-}— 1

1If these r equal ratios are all multiplied together, the result is evidently

(4-46)

Therefore, A=1In ==In

The expression in Eq. (4-44) for \ in terms of the galvanometer param-
eters enables other relations to be developed. A particularly useful one
is the relation between A and the period. From Eq. (4-36),

a2+w2=(§,—7:>2=w02
Tz_ wo?‘_ a2_ 9£2~— éz
QRCRO R N

Therefore,
T /AN 2
I _ \/ 1+ (é) (4-47)
To mw

This shows that the size of A relative to = is important. For example, if
A = =, the ratio of the actual period, T, to the theoretical undamped
period, T, is T/Ty = /2.

The relationship between A and the relative damping coefficient, %, is
easily developed by combining Eqgs. (4-47) and (4-34).

AZ_ Tz_l— 1 _1__ kz
)  \T, T 1 — k2 T 11—k

__ mk
V1= k2

For example, if & = 1/4/2, then A = 7. In similar fashion it is possible
to develop many other relations in which A appears.

4-10. Determination of Parameters. The parameters of the galva-
nometer J, D, S, and K appearing in Eq. (4-14) may be determined by
various indirect methods. They are very difficult to obtain directly.
The general idea is to determine enough conveniently measurable quanti-
ties to enable calculation of the four parameters by use of the relation-
ships that have been developed in the oscillatory and critically damped

Hence,

Hence, A (4-48)
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cases. (The overdamped case is of no interest here.) In practice, the
actual methods employed depend to some extent on the type of galva-
nometer. In order to illustrate the principle, it will simply be shown
here that it is possible to determine J, D, S, and K by indirect methods
in terms of readily measured quantities.

The determination of K may be carried out independently from the
other parameters. In steady-state deflection it has been shown that

E

I'=+7+%.

= K9,

All four quantities, E, R, R.., and 8,, are easily measured; hence, K may
be computed. For instance, £ may be measured accurately with a
potentiometer. A decade-resistance box may be used in the laboratory
for R. The galvanometer resistance, R., may be determined easily by
the half-deflection method (see Prob. 3-10). And 6, may be related
directly to the scale reading; for instance, in a mirror galvanometer with
a circular-arc scale the scale reading is given by d = 2D6,, where D is the
distance between scale and mirror.

The remaining three parameters are intimately interrelated, and a
group of measurements is required to untangle them. An example
follows. The galvanometer may be energized from an initially zeroed
state and made to oscillate about 6,. Then the logarithmic decrement, X,
and period, T, may be measured—the former by observing elongations
and the latter by using a stop watch to measure the time duration of a
counted number of complete cycles of oscillation. The deflected galva-
nometer may be open-circuited and it will then oscillate about its zero
rest position with damping determined only by air, since R — «. The
logarithmic decrement, A, may be measured in this instance. Finally,
the external resistance, R, may be adjusted until critical damping is
achieved. This is accomplished by repeatedly energizing the galvanom-
eter from an initial resting state, using different values of R until the
first overshoot barely disappears. The measured quantities \, T, A, and
R., the total resistance required for critical damping, permit calculation
of the galvanometer parameters J, D, and 8, as well as the air-damping
coefficient, D,, as shown below.

With A and T determined, S/J may be calculated from the relations

T A\ J
TFV”(%) o= 2|3

The ratio D/J may also be calculated since

of _ DT

A= =T
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In the case of air damping only, A\, may be used in conjunction with the
determined value of S/J to find D,/J because

R \/S\/ ()2

Hence, S/J, D/J, and D,/J are calculable from the measured quantities
A T, and A,
The damping coefficient, D, is given by
SZ
K*(R + R.)
For the special case of critical damping, B, = B + R,, is known from
direct measurement. Therefore,

D=Da+

For critical damping, the relative damping coefficient, &, is unity so

= +/8/J = D./2J. Thus, D,/J = 2~/8/J is known because S/.J is
known. Therefore, S may be computed because D,/J, K, and R, have
all been previously determined. Then J, D, and D, follow immediately.
An explicit relationship for S in terms of the quantities determined in
this example is

KTR, Aa
S- s (- veeo) (49

4-11. Operation in Steady Sinusoidal State. There are many appli-
cations of d’Arsonval movements where the galvanometer is energized
from sources displaying irregular time variations. It is often used to
measure nonperiodic voltages and currents in a variety of circuits and
electrical machines. Many other applications are found in connection
with transducers, devices that convert physical quantities such as pres-
sure, temperature, humidity, and others into electrical outputs providing
a measure of the physical quantity. Galvanometers are also used widely
in biological measurements on animals and human beings whose hearts,
brains, and nerves produce measurable but irregular time-varying electrh
cal signals. In many of these applications, it is desirable to record the
deflections automatically, thus obtaining a permanent record of the result
that may be analyzed at leisure. This is usually acecomplished in mirror
galvanometers by directing a focused beam of light on the mirror whick
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reflects it onto a moving strip of photographic paper. As 6 varies, the
beam on the paper moves proportionately and in a direction perpendicu-
lar to the travel of the paper. A record, or graph, of 6 vs. time is thereby
obtained. In pivoted-coil instruments it is common to use a stylus or
pen (rather than an indicating pointer) that writes directly on a chart
moving in a direetion perpendicular to the swing of the stylus.

The important characteristics of a galvanometer used to record irregu-
lar, varying inputs may be found from knowledge of the transient response
to a sudden disturbance. The behavior of the coil in going from a given
static state to a different static condition, though hardly the same as the
galvanometer motion in the irregular-signal case, may be properly inter-
preted. Quantities such as speed of response and period (or frequency)
of oscillation enable the user to judge the faithfulness with which the
galvanometer will follow an irregular input. For example, if the fastest
change in the signal to be recorded requires a time interval that is long
compared with the rise time of the galvanometer, a faithful record may
be expected. The rise time is sometimes defined as the time for ¢ to
change from 10 per cent to 90 per cent of 6, starting from 6 = 0.

On the other hand, an entirely different point of view may be used:
the steady-state response characteristics. These are the characteristics
displayed by the galvanometer when a sinusoidal signal is applied. Such
quantities as bandwidth and phase shift are then considered as measures
of galvanometer performance, when confronted with irregular signals.
These steady-state quantities do not really provide any more funda-
mental information than the transient quantities. Indeed, the steady-
state response and the transient response are intimately related, and one
may be predicted from the other. However, steady-state quantities are
frequently used. Accordingly, a brief treatment of galvanometer oper-
ation in the steady alternating state will be presented. Steady-state and
transient characteristics will also be compared.

The basic starting point of the analysis must be the differential equa-
tion for 6. If a voltage E, sin wt, rather than a direct emf, E, is applied
to the galvanometer in series with a resistance R, Eq. (4-14) becomes

J d*o SE, sin ot _ 81,
de? K(R+ R. K

This is obtained simply by replacing E in Eq. (4-14) by E, sin wt. The
correctness of this procedure may be verified by reviewing each step in
the development of Eq. (4-14) and noting that nothing except E has been
changed. Even the motional emf, e, has the same form, (S/K) d6/dt, for
any applied signal. It should also be noted that the self-inductance of
the galvanometer coil, L., has been neglected once again. The symbol w
represents the angular frequency of the sinusoidal voltage source and is

+ D %tg + 86 = sin wt (4-50)
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completely independent of the galvanometer characteristics. It is not
the same » that was used in the transient analysis.

The general solution of Eq. (4-50) consists of the sum of a steady-state
term and a transient term. However, only the steady-state response is
of interest, so the transient term will be ignored. When the voltage
E, sin ot is applied to the galvanometer, § will undergo rather irregular
forced-oscillatory motion but will eventually settle down to a steady sinus-
oidal vibration of frequency the same as the source. This is expected
because damping is present and the differential equation is linear with
constant coefficients. It is this periodic motion that constitutes the
steady-state response and does not include the intermediate transient.

4-12. Steady-state Solution. The steady-state solution of Eq. (4-50)
may be determined by utilizing the ¢“* method outlined in Sec. 2-5.
Consider the complex equation

SI,

2.
TR+ DB 5u = Sh

dt?
The two reasons for introducing this equation are that 8 is simply related
to u by

6 = Im {u} = Im {Ue+t}
and also the complex angular deflection, U, is easily obtained. Substi-

tute Ue* into the complex differential equation, cancel ¢, and the follow-
ing algebraic equation in U results.

(§j)2JU + jwDU + SU = %
Solve for U.
U = ST, Ue ¥

K[S — w®J + jwD] ~
Thus, the desired steady-state solution for 8 is obtained.

6 = Im {Uevt} = ST, sin (wt — tan™! — @D )
K~/ (S — &) + (wD)? S — W
(4-51)
Another procedure for developing 6 that is rather tedious, but less
sophisticated than the e’ solution, is based on the recognition that Eq.
(4-50) is linear and has constant coefficients. Therefore, the steady-state
solution for § must be expressible in the form 6 = 0, sin (ot + ¢).
Direct substitution of this form of 6 and its first and second derivatives,
as appropriate, into Eq. (4-50) enables the peak value and phase angle
of ¢ to be determined. The result agrees with Eq. (4-51).
Even a third procedure may be utilized, based on the analogy with the
series RLC circuit, mentioned in Sec. 4-4. The concepts of complex
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impedance and complex current may be used fruitfully, and the basic
method is the same as that employed to develop Eq. (4-51). In carry-
ing out this method, it must be recognized that 8 is analogous to the
charge, ¢, on the capacitor, C.

Equation (4-51) may be cast into a highly useful form by introducing

the quantities
IS w8 /ST
w5 o=t -5 M (4-52)

which, in the analogous RLC circuit, correspond to the resonance fre-
quency wo = 1/+/LC and the circuit @ = woL/R. Note that the period
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Fic. 4-8. Steady-state amplitude characteristics.

of wp is exactly the same as the free period, To, defined in the transient
analysis. Moreover, 1/@Q is equal to twice the relative damping coef-
ficient, k, used in the transient analysis.

Introduction of w, and @ into Eq. (4-51) gives, after some manipu-
Jation, the following expressions for 6,, the peak value of 6, and ¥, the
phase angle of 6.
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0, = L0 (4-53)

» 2
Ki\/ 23_@)
wo 1+Q(o)o w
1

o(z-2)

These results, while appearing to be a bit more cumbersome than Eq.
(4-51), are really easier to interpret. Ior one thing, they express 6 in
terms of the pertinent quantities, wy and Q. Furthermore, w always
appears in combination with w,, that is, as w/w,, which is a normalized
frequency variable. Finally, for any given static sensitivity, I,/K, both
6, and ¢ are clearly seen to be functions of only two quantities, @ and w/w.

tan ¢y = (4-54)
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Fia. 4-9. Steady-state phase characteristics.

Curves showing the behavior of §,, the peak value of 8, and y, the
phase angle of 6, as a function of w/w, are given in Figs. 4-8 and 4-9 for
several values of Q. The normalized quantities 6,K/I, and w/wo per-
mit these curves to be used regardless of the particular values of the
galvanometer parameters. It may be seen that for low Q (large relative
damping, k) the peak amplitude, 8,, drops off steadily with frequency.
For high @ (small relative damping, k) resonance phenomena occur in
the vicinity of w,. The higher the Q, the closer the maximum response
is to wo and the higher the resonant peak. The angle ¢ is positive for
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all values of @, which means that 6 always lags the applied voltage. It is
interesting that ¢ = 90° at w = w, for any value of Q.

4-13. Galvanometer Resonance and Low-pass Bandwidth. The volt-
age source E, sin wi causes a forced steady-state vibration of the galva-
nometer. If the galvanometer is underdamped, it will tend to oscillate
rather vigorously when the forcing frequency is near the natural fre-
quency of oscillation of the galvanometer. This resonance effect may be
very pronounced.

The frequency at which the forced vibrations display maximum ampli-
tude may be obtained in principle by setting the derivative of 6, with
respect to w equal to zero. As a matter of mathematical technique, the
normalized frequency variable £ = w/wo may be used. Furthermore,
only the denominator of 8, need be differentiated, since 6, is a maximum
when the denominator is a minimum. Also, the square of the denomi-
nator of 8, will be a minimum at the same value of z for which the
denominator itself is a minimum. Therefore, the roots of z in the follow-
ing equation will give the desired results.

% (x? + Q%x* — 2Q%x* 4+ @?) = 0 = 2z 4+ 4Q%° — 4Q%
With w,, defined as the value of w at which 8, is a maximum, there results

xmm%’::\/l—%m and x,,,lz“’w—":=o (4-55)
The root w.: = 0 gives the value of 6, at zero frequency. It represents
a minimum when w,, is real and represents a maximum when w,, is imagi-
nary. For Q> 13, w, is very nearly equal to wo. For smaller @, wn, is
less than wo,. The peak of the response curve tends to shift from we
toward @ = 0as Qislowered. The peak disappears entirely for @2 = 14,
and then 6, is a maximum at w.i = 0. These trends may be seen in
Fig. 4-8.
The maximum value of 6, is obtained by inserting w./we into HEq.
(4-53). After manipulation, the result becomes

L 20

™K AAQ -1
The maximum peak value of 8, 6,., is thus seen to become larger, the
larger the Q. For Q2 >> V4, it is approximately

Om = I;{Q Q> 1 (4-57)

and this is Q times the static response. For smaller @, 6,, tends to get
smaller, and this is borne out in Fig. 4-8. It is interesting to note that

(4-56)




$4-13] GALVANOMETER DYNAMICS 101

for Q* = 1%, 6,m = I,/K. This agrees with the value of 6, at w = 0,
as it should, because the location of the resonance peak shifts toward
wn = 0as Q?— 14,

The curves in Fig. 4-8 indicate that the galvanometer may be regarded
as a low-pass filter. The low-pass bandwidth, BW, of the galvanometer
may be defined as the range of frequencies over which 6, is equal to or
greater than a prescribed fraction of the peak value of 8 at @ = 0. The
100/N per cent bandwidth is equal to the frequency at which the response
has dropped to 1/N times the response at w = 0 (N = 1). An expres-
sion for the 100/N per cent bandwidth may be obtained by setting 6,
equal to /,/NK in Eq. (4-53), and solving for # = w/w,. The following
quadratic form for z results:

L
Q2

Solve using the quadratic formula and discard extraneous roots.

_ BwW 1 1\? . ¢

- 27 _[1—§@+\/<1 ‘2T)2> +N —1J (4-58)
The fact that there is only one physically realizable root for N = 1 proves
that the response never dips below I,/K except at the high-frequency
ends of the curves. For a numerical example, take N = 2 and Q=1.
Equation (4-58) yields = 1.5. This means that the 50 per cent band-
width is 50 per cent greater than w, for Q = 1. In other words, the
response drops to one-half its zero-frequency value at @ = 1.5 w,. This
may be checked on the curve in Fig. 4-8. If 2Q?> 1, 1/2Q* may be
ignored in comparison with 1, and the bandwidth expression simplifies to

BW = w1+ N QP> N=21 (459

The phase angle of ¢ at the frequency w,, is given by substituting w,,
into Eq. (4-54).

:1:4+x2(—2+ )+1—N2=0

tan ¥ = v/2(2Q* — 1) = Wn

For Q*>> 14, tan ¢, is equal to 2Q, so ¥, is only slightly less than 90°
at the resonant peak. For Q% = 14, the phase angle is zero, since this
corresponds t0 w, = 0.

When o < wo, w/wo may be ignored compared with wo/w in the denomi-
nator of Eq. (4-54), with the result

ta,n1//z|//=—w— o K wp

wo

Thus, ¢ is proportional to » over a limited range of frequencies close to
zero. The slope of the phase characteristic at small values of w/wo
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depends inversely on Q. The curves of Fig. 4-9 indicate that even if
w is too large to permit the above approximation, the phase character-
istic may still be maintained fairly close to a constant times w, provided
Q has a value of about 1/4/2.

4-14. Vibration Galvanometer. The sharp resonance peak displayed
by the galvanometer when the @ is high has two distinctive features.
First, the galvanometer response at
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160- the frequency wo, may be many
times greater than that at w = 0.

1401 Second, the galvanometer behaves
essentially as a highly selective

1201 Q=150 bandpass filter. The vibration gal-
vanometer is one that takes advan-

100 tage of both these desirable charac-
teristics. The most widely used

. K80 - type is a modification of the
i—p d’Arsonval galvanometer in which
60 an adjustable taut suspension is
used to vary S so that wo may be

a0l tuned to the angular frequency of
the source, w. Also, the moment of

20| inertia, J, is designed to be small so
J L that values of w in the range up to

: ) L about 1,800 radians per sec (300 cps)

0 04 08 1.2 1.6 20

w

are available. Vibration galva-

@y
Fic. 4-10. Amplitude characteristic of
vibration galvanometer.

nometers of this type are capable of
displaying a @ as high as 150 or
more, and this yields very high

sensitivity in combination with excellent discrimination against harmonics
of the signal source. This galvanometer is used principally as a sensitive
a-c- detector in low-frequency bridge circuits. It is usually equipped
with a reflecting mirror and light source. When the galvanometer is at
rest, a fine bright line of light is seen on its scale. Application of signal
causes the line to widen out into a band as the galvanometer coil vibrates.
An intense light source is desirable, since the brightness of the band
diminishes rapidly as the deflection increases.

The response curve for a vibration galvanometer with @ = 150 is given
in Fig. 4-10. The sharp resonance peak may be analyzed from relations
that have been developed in the preceding section. From Eq. (4-55),
it is seen that the maximum response oceurs at » = wo in this high-@Q case.
Also, Eq. (4-57) shows that the maximum deflection is I,Q/K, which is
150 times the static deflection in the case of Fig. 4-10.

The manner in which the response drops off with frequency may be
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investigated by use of Eq. (4-53). Because 6, diminishes so markedly
when v deviates from wy by only a small percentage of wy, it is justifiable
to employ a narrow-band approximation. Define

=21 (4-60)

Ele

which is the fractional deviation of  from the resonance value, wg. When
@ = wo, & = 0; and when w = wo + Aw, § = Aw/ws. Expressing w/wo in
terms of § in Eq. (4-53) leads to a considerable simplification for small s.
The term wo/w may be expanded

wWo

S S -1 1 — ..,
o STy = A+ =1ty
and terms in 8% and higher order may be neglected with small error if
§ <1. Then the difference between the two nearly equal frequency
ratios becomes

2 15— (1 —8) =28

wo w
Meanwhile, the factor w/w, multiplying K in Eq. (4-53) may be replaced
by unity if 6 < 1. Thus, Eq. (4-53) becomes

_ 1,Q
K /1 + 4Q*3®

This equation contains the information that 0, is at its maximum value,
I,Q/K, at 6 = 0. Also, for § = +1/2Q (which is only a + 14 per cent
change in frequency for Q = 150), 6, decreases to 1/4/2 = 0.707 times
its maximum value (see Fig. 4-11). In other words, the response is
3 db down from its maximum value at wi/wo = 1 — 1/2Q and at
w/wo = 1 + 1/2Q. Therefore, the 3-db bandwidth is the difference
between w; and w;.

1 1 2]
wz—w1=wo<1+2—Q)‘—wo<l—m)=6‘) (4—62)

The fact that @ is equal to the resonance frequency divided by the 3-db
bandwidth is not surprising, since this is one of the definitions of Q. The
3-db bandwidth definition employed here is, of course, different from the
low-pass bandwidth of the preceding section.

A quantitative idea of the excellent discrimination provided by the
vibration galvanometer against harmonics of the signal source may be
found by determining the response at w = 2wo. Since Eq. (4-61) is
restricted to small values of 8, it must not be used for this calculation.

§K1  (4-61)

4
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Instead, return to Eq. (4-53) and replace w by 2wq with the result

0 —_ IPQ
2K /1 +9Q*/4

w = 20.)0 (4:-63)

—~— 3 db down
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Fia. 4-11. Universal curve for narrow-band approximation.

For the high-Q case, this shows that 6, has decreased to I,,/3K at w = 2uw,.
The maximum response at @ = wo is 3Q times this value, or 450 for the
curve in Fig. 4-10. The second harmonic rejection for @ = 150 is thus
seen to be very substantial, 53 db.

4-15. Relations between Transient and Steady-state Response. To
illustrate the relationship between the steady-state and transient response,
resonance in the steady state and critical damping in the transient state
may be examined. It has been shown that the resonance peak disappears
at Q> = 14. The corresponding damping, to have no forced-vibration
resonance peak, found from Eq. (4-52),1s D = 4/28J. However, in the
transient analysis critical damping exists when D = D, = A/48J. This
damping is larger by a factor of 4/2 than the largest permissible value of
D to avoid a resonance peak in the steady-state response. In other
words, the maximum permissible value of Q for no resonance peak in
steady state is 1/ /2 = 0.707, but the value of @ that corresponds to
critical damping in the transient state is 4. Thus, even though the
frequency response curve displays no resonance peak in steady-state
operation, the transient response may display a slight overshoot. The
damping for @ = 1/4/ 2 represents an underdamped system of relative
damping coefficient k = 1/4/2 = 0.707.
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A number of other relationships between steady-state and transient
operation may be deduced. Perhaps a similarity has been noticed
between the frequency of maximum steady-state response, w.,, and the
frequency of oscillation in the transient response of an underdamped
galvanometer. To explore this, note that w., is given by

wm=wn1f1—é%§=\/§—2a2

The frequency of oscillation in the underdamped transient case is
w = /(8/J) — a®. It is interesting that these two results are not
quite the same.

As a final example, the relationship between @ and logarithmic decre-
ment may be derived. The relation between relative damping coeffi-
cient, &, and logarithmic decrement, A, developed in the transient analysis
is given in Eq. (4-48). Since 1/Q = 2k, it follows that
- T

40 — 1
Thus, when the maximum permissible value of @ for no resonance peak is
employed, @? = 14, this corresponds to a logarithmic decrement in tran-
sient operation of A = w. For @ < 14, A becomes imaginary, which is
reasonable since @ = 14 corresponds to critical damping.

These and other relationships between transient and steady-state
characteristics show the intimate connection between them. Funda-
mentally, characteristics of either type may be used to obtain infor-
mation concerning dynamic behavior of galvanometers.

A =

PROBLEMS

4-1 (§3). Develop the differential equation of the torques for a uniform-radial-field
galvanometer when the self-inductance, L=, of the coil is not neglected. Verify that
the result reduces to Eq. (4-14) as L,, — 0. Hint: Differentiate Eq. (4-5).

4-2 (§5). It is entirely conceivable that an initially deflected galvanometer with
zero initial coil velocity will not return to zero reading when the source of current is
removed. Yet, Example 2 of Sec. 4-5 yields § = 0 for this case. At what point in
the development of the equations for 8 was this possibility ruled out, and how may
Eq. (4-14) be modified so as to include this possibility ?

4-3 (§5). Starting with Eq. (4-18), impose the boundary conditions d8/dt = A,
and @ = foati = 0. Determine the equation for in terms of the constants A, and 6,
with the arbitrary constants A and B eliminated. Compare this result with Eq.
(4-20).

4-4 (§6). The coil of the galvanometer of Fig. 4-1 is at rest, and 6 = 0 before the
switch is closed. When the switch is closed at ¢ = 0, the coil motion is critically
damped. Show that at time { = 4/J/8 the departure of the instantaneous deflec-
tion from its ultimate steady-state value, 6,, is the fraction 2/¢ of the steady-state
deflection, where ¢ = 2.7183.



106 ELECTRICAL MEASUREMENT ANALYSIS

4-6 (§7). Derive Eq. (4-37) by substituting 8 = jw in Eq. (4-24).

4-6 (§7). The galvanometer in Fig. 4-1 has a free period Ty = 2 sec, and negligible
air damping (D, = 0). When R 4 R, = 100 ohms, the same galvanometer has a
period T = 4 sec. What total resistance B + R, is required to critically damp this
galvanometer?

4-7 (§7). A certain galvanometer has negligible air damping (D, = 0) and requires
an external circuit resistance B = 300 ohms for critical damping (see Fig. 4-1). When
used with an external circuit resistance B = 600 ohms, the period of the galvanometer
is T = 7 sec. The galvanometer resistance is R, = 100 ohms. What is the free
period, T, of the galvanometer?

4-8 (§7). When the switch is closed in the galvanometer circuit shown in Fig. 4-1,
where R, = 50 ohms and B = 100 ohms, the coil angle vs. time follows the equation

0 = 0.4 — 0.8:—V3tcos (t - 13[)

(¢) What is the maximum value of 7 (b) What value of R is required for critical
damping? Assume D, = 0.
4-9 (§7). Repeat Prob. 4-8 for

6 = 0.100 — 0.128¢# cos (5t — 38.67°)

4-10 (§7). In the circuit of Fig. 4-1, E = 1073 volt and R + R. = 100 ohms.
After the switch is closed at { = 0 on an initially inert galvanometer, the deflection
reaches a maximum value 6, = 0.604 radian at ¢t = =/2 sec. It settles to a final
deflection 8, = 0.500 radian. Assume a uniform radial field and constant galvanom-
eter parameters. (a) Develop the equation for the deflection, 8, as a function of { with
all constants evaluated numerically. (b) If the moment of inertia, J, of the moving
coil is 2.4 X 10— newton-meter-sec? per radian, what is the numerical value of the
coefficient of air damping, D,? (State units of D,.) Assume that no damping exists
other than air damping and circuit damping.

4-11 (§8). A critically damped galvanometer is initially at rest and its deflection
is zero. It is energized from the circuit of Fig. 4-1 at £ = 0. Calculate the time,
in terms of T, required for the deflection to reach 99 per cent of the steady-state
deflection.

4-12 (§8). The switch in Fig. 4-1 is closed on an underdamped d’Arsonval galva-
nometer with a uniform radial field and negligible coil inductance. Derive a general
expression for the difference in time between the instant that 6 goes through its steady-
state value and the instant at which the following maximum (or minimum) occurs.

4-13 (§9). The period of a galvanometer is measured to be 7' = 18.6 sec, and the
ratio of two successive elongations is 1.62. What is the free period, T, of the
galvanometer?

4-14 (§9). A d’Arsonval mirror galvanometer with a uniform radial magnetic field
has a circular-arc scale at a distance 1 meter from the mirror. This galvanometer is
zeroed (zero scale reading with zero current through the galvanometer) and then the
circuit shown in Fig. 4-12 is connected. With the switch closed, the steady deflec-
tion on the scale is 100 mm. At time ¢ = 0, the switch is suddenly opened and the
system oscillates as shown, just reaching zero on the first undershoot at ¢t = 1 sec.
(@) Compute the current sensitivity, Sz, of the galvanometer. (b) Compute ds, the
final scale deflection in millimeters, as { — «. (c) Neglect air damping, D, and
compute the numerical value of S, the spring constant of the suspension.

4-16 (§9). The deflection of a d’Arsonval galvanometer with a uniform radial field



GALVANOMETER DYNAMICS 107
is given as a function of time by
6 = 0.218 — 0.244¢70-5% gin (¢ + 63.5°)
Find the maximum value of 8 and the logarithmic decrement, A.

4-16 (§9). The switch in Fig. 4-1 is closed at ¢ = 0 on a zeroed initially inert galva-
nometer whose sensitivity is 0.1 pa per mm. The oscillatory deflection swings up to

100

10,0002 | 200Q 1700 Q

Scale deflection, d, mm

0 1.0

Time, ¢, sec
Fi1a. 4-12. Transient behavior of galvanometer.

a maximum of 80 mm, and next swings back to a minimum point 40 mm from zero.
(a) Calculate ] = E/(R + R,). (b) Find the logarithmic decrement.

4-17 (§9). The switch in Fig. 4-1 is closed on an underdamped galvanometer, and
the maximum deflection at the first overshoot is 20 mm. The total deflection on the
fourth overshoot is 15 mm and occurs 20 sec after the first overshoot. Find the
logarithmic decrement, A, and the period, T, of the underdamped galvanometer.

4-18 (§9). An experimenter energized a highly underdamped galvanometer and
was interested in observing the magnitude of the total deflection, dy, at the first
overshoot. However, he was too late to take the reading; instead, he read the total
deflection d; = 50 mm at the first undershoot, and the total deflection dy = 70 mm
at the second overshoot (see Fig. 4-7). Then he calculated the reading, dy, that he
missed. You calculate it.

4-19 (§10). Verify Eq. (4-49).

4-20 (§12). Demonstrate that the solution for  obtained by direct substitution of
0 = 6y sin (wf + ¢) into Eq. (4-50) is the same as that obtained by the e method in
Eq. (4-51).

4-21 (§12). Show that Eq. (4-51) may be placed in the form of Eqs. (4-53) and
(4-54) by use of the relations in Eq. (4-52).
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4-22 (§12). Show that Eq. (4-53) may be written in the form
_ IpQwo .
0, = Ko S ¥

4-23 (§12). Show that 6, = I,Q/K when w/we = 1, and check these five points
on the curves of Fig. 4-8.

4-24 (§13). For values of @ between 1/4/2 and 5, compute and plot the curve
Opm vS. the value of w/wo at which the maximum occurs. This is the locus of the
resonant peaks in Fig. 4-8.

4-26 (§13). Compute the 90 per cent low-pass bandwidth of the d’Arsonval galva-
nometer for Q = +/2.

4-26 (§13). To avoid phase distortion, the phase angle, ¥, of the galvanometer
response must be a constant times w/wo, as discussed in Sec. 11-4. For Q = 1/4/2,
Fig. 4-9 shows that this condition is almost fulfilled. Compute the difference between
¢ and ww/2we for a range of values of w/wo between 0 and 1, and plot the results.
What is the maximum deviation of ¥ from the proportional relationship, and at what
value of w/we does it occur?

4-27 (§13). The phase angle, ¥, of the galvanometer output is proportional to
for small values of w/woe. With @ = 2, determine the value of w/wo at which y devi-
ates by 5° from the proportional relationship.

4-28 (§14). The angular frequency applied to a vibration galvanometer with @ = 50
isSw = 1.lwe. What is the per cent error in the computed response using the narrow-
band approximation in Eq. (4-61), compared with that obtained from Eq. (4-53)?

4-29 (§14). Compute the second-harmonic rejection capability, in decibels, of a
vibration galvanometer with @ = 100.

4-30 (§15). Show that the product of the damping coefficient, D, and the period, T,
of an underdamped galvanometer is given by 4rJ/~/4Q? — 1.




CHAPTER 5

ERRORS OF MEASUREMENT

A genuine feeling for the subject ‘“‘errors of measurement” usually
requires at least one thoroughly penetrating laboratory experience in
which the experimenter comes to grips with a difficult, high-precision
measurement problem. There really is no substitute for this experience.
It may be tremendously enlightening and satisfying.. In the last analy-
sis, performing an accurate measurement represents a grapple with the
unknown, but there are many layers to be unpeeled before this final stage
may be reached. No pretense is made that printed words can replace
this experience, nor can a classroom treatment of the subject. More-
over, it requires more than the casual type of measurement performed in
low-accuracy work to get to the heart of the matter.

Producing an accurate result is not merely a matter of collecting and
interconnecting some apparatus and taking readings. An almost incredi-
ble effort is involved for highly accurate work. The experimenter must
comprehend the theory of his method thoroughly and must intimately
know all pertinent characteristics of his equipment. He might have to
develop theories and equipment he needs but has been unable to find,
despite intensive search of the literature. He must minimize and correct,
for factors known to influence his results. When the larger factors have
been taken into account, smaller ones emerge and must be circumvented.
He must employ skill and care and often use ingenious and subtle tech-
niques to achieve his ends. Sometimes subsidiary experiments are neces-
sary to locate and evaluate sources of error. He must think about what
he has done, or is about to do, questioning every step with an attitude of
doubt and distrust, not proceeding until convinced that all is well. He
must live with his problem.

When he is through—an arbitrary point because there is no real end
to this work—he usually has acquired such complete knowledge of the
entire matter that the satisfaction of accomplishment is gratifying indeed.
If he has not done his work well, he may find himself in an embarrassing
position, as was the case of the following gentleman who presented his
findings at a professional meeting.
’ 109
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There was a young man from Purdue

Who had much to report that was new and true.
But that which was true was not new,

And that which was new was not true.

A deep penetration into this complex subjeet, which in many ways is
an art, is difficult at the introductory level. The subject of errors of
measurement is ordinarily attacked seriously for the first time in advanced
(graduate) laboratories or in the professional experience of the engineer.
Accordingly, the aims here are modest. The kinds of errors that may
arise will be suggested, with examples taken primarily from the preceding
chapters. An introduction to methods of statistics which may be applied
to unavoidable errors is presented in Chap. 6. Finally, some methods
for estimating errors of results computed from measured quantities will
be introduced in Chap. 7.

There are two over-all objectives for studying errors of measurement:
(1) to find out how errors may be reduced and (2) to learn how estimates
of the reliability of results may be made.

5-1. Some Definitions. Every measurement is in error. If the pre-
cision of the equipment is adequate, no matter what its accuracy, a dis-
crepancy will always be observed between two measured results.

These sound like rather provocative statements, but what do they
mean? To be understood correctly, the key words error, precision,
accuracy, and discrepancy must be understood clearly in the context
usually intended when used with respect to measurements.

Error: estimated uncertainty

Precision: sharp definition

Accuracy: closeness to truth

Discrepancy: difference between two results

In ordinary usage, the word ‘‘error”’ may have certain unpleasant
connotations. It may imply a mistake, a moral offense, or possibly a
belief in something untrue. In the extreme sense of a blunder, it com-
monly implies ignorance, stupidity, and sometimes blame. None of these
is implied when the word error is used in connection with electrical meas-
urements. There is nothing shameful about a measurement error; in fact,
omission of a statement of the error is poor practice, especially since no
measurement is entirely free of error. The concern in measurements is
the possibility of overlooking contributions to the estimated uncertainty
of the result and the reporting of too small an error. The error of meas-
urement is usually stated in quantitative terms using an accepted measure
of the uncertainty which is defined mathematically. The most common
of such measures in scientific work is the standard deviation, but others
are sometimes used, as will be discussed in Chap. 6.
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In ordinary usage, the distinction between the words ‘‘precision” and
““accuracy” is usually vague. Indeed, the dictionary inevitably links
one of these terms with the definition of the other. This state of affairs
is in sore need of clarification in the field of measurements, where the
two words have sharply different meanings. An instrument may possess
high precision by virtue of a clearly legible, finely divided, distinct scale
from which readings are taken. At the same time its accuracy may be
poor; for example, because of an internal defect or misadjustment. A
specific illustration is provided by a mirror galvanometer whose air-gap
field has been altered by the presence of iron filings which have inadvert-
ently been collected. Precise scale readings to a fraction of a millimeter
might be possible in such a galvanometer, but the corresponding value
of coil current, deduced by use of the current sensitivity of the uncon-
taminated instrument, might be very different from the actual current
in the coil.

Precision is also used in measurements to describe the consistency or
reproducibility of results. A quantity called the precision index, defined
in Chap. 6, describes the spread, or dispersion, of repeated results about
some central value. High precision means a tight cluster of the repeated
results while low precision indicates a broad scattering of values. Again,
there is not necessarily any relationship between precision used in this
sense and the accuracy of the result. All the repetitious measurements
could be biased in the same way by some systematic effect that produces
a deviation of the measured result from the truth. For example, an
ammeter used with a shunt designed for a different meter movement
could be used repeatedly to measure the same current. Precise scale
readings might be possible, and all measurements might display excep-
tional agreement among themselves, but they all would be inaccurate
indications of the value of the current since use of an incorrect shunt
introduces a systematic shift of all readings.

Finally, the term ‘“discrepancy” deserves comment, despite its clearly
defined meaning in common usage. The difficulty usually encountered
is failure to distinguish clearly between discrepancies and errors. For
instance, the discrepancy between a measured value of the resistance per
unit length of a piece of standard copper wire and the value listed in the
standard-wire tables is not necessarily an error of measurement. The
characteristics of the copper used in the experiment might be different
from that used to establish the “handbook’’ value. As another example,
the distinction between discrepancy and error is important because dis-
crepancies that arise when repeated measurements of the same quantity
are performed might constitute only a small portion of the error of the
measurements. Finally, if two different experimenters obtained two dif-
ferent results for the same quantity, it is correct to say there was a dis-
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crepancy between the two results. But the error reported by either
investigator well could be larger than this discrepancy.

While there are other words that must be understood clearly, the four
mentioned should serve to alert the student that precise terminology is
essential to obtain an accurate understanding of errors.

5-2. Classification of Errors. Because errors may arise from every
source imaginable, there are many different ways in which they may be
classified. Two broad categories often used are called ‘‘systematic’’ and
“residual.” Systematic errors are those which, in principle, may be
avoided or corrected. They arise from such sources as outright mis-
takes, defects of instruments, influence of physical environment, poor
experimental design, and habits of the observer. Residual errors are
those which would inevitably remain if all systematic errors were
eliminated.

Both these terms may be confusing. Residual errors are not neces-
sarily those which reside in the final results. Even in the best of experi-
ments, final results generally contain both types of errors. Systematic
errors are not necessarily constant or systematic in that they may vary
with the conditions of the experiment and may sometimes behave in
irregular fashion, fluctuating over a period of time. Because systematic
errors may, in principle, be reduced or corrected, perhaps better terms
might be “correctable” or ‘determinate’ errors.

It is helpful to consider four categories of systematic errors:

a. Gross Errors. These are mistakes or blunders including misreading
of instruments, incorrect adjustment of apparatus, improper application
of instruments, computational mistakes, and others.

b. Instrument Errors. These are defects or shortcomings of instru-
ments, such as errors in calibration, damaged internals, unstable internal
elements, worn or defective parts, and others.

¢. Environmental Errors. These are physical influences on the experi-
menter, on the equipment he uses, or on the quantity being measured.
Such errors are attributable to temperature, pressure, humidity, stray
disturbances, and so forth.

d. Observational Errors. These pertain to habits of the observer such
as imperfect technique, poor judgment, peculiarities in making observa-
tions, and others.

Residual errors cannot be subdivided into convenient categories because
they arise from such a wide variety of sources. Some of them may be
completely unknown in a given experiment. These uncontrollable errors
are unavoidable in any measurement, and they often display random
fluctuations that do not follow a regular pattern. They are frequently
caused by the erratic combination of a large number of small effects,
some of which have known sources and others of which do not. In many
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cases the experimenter cannot suppress these effects without at the same
time altering the quantity he is attempting to measure.

5-3. The Pursuit of Systematic Errors. The many ways in which
systematic errors may arise represent an exacting test of the experi-
menter’s alertness, imagination, and inquisitiveness. A competent and
reliable experimenter assumes an air of vigilance and an attitude of dis-
trust toward every item that could possibly influence his result. One
slip, and his painstaking labor may be nullified.

An organized procedure for handling systematic errors may be envi-
sioned, but more likely than not, it is carried out by the experienced
individual in an intuitive and seemingly haphazard manner. For the
beginner, it is well to indicate at least some stages of the process. First
and foremost, it is necessary to discover that a systematic error exists, or
may be expected to exist. This is strongly dependent upon the ability
and experience of the investigator. A number of approaches are sug-
gested in Sec. 5-14. Second, a quantitative estimate of the influence of
the systematic error on the quantity being measured is desirable. This
may be obtained by means of an auxiliary or pilot experiment, or may
sometimes be deduced by theoretical analysis. Third, the magnitude of
the error is usually appraised in terms of desired over-all accuracy, and
the cost and difficulty of possible alternatives to circumvent the error.
Finally, if indicated, a means is devised to eliminate or correct for the
error. 'This may be a simple matter of replacing defective equipment;
it may require the introduction of additional controls on the conditions
of the experiment; or it may even take the form of devising an entirely
different method of measurement.

Each and every one of these four steps may represent a highly chal-
lenging problem. In some instances, some of the steps may be obvious
and trivial, but the greater the desired accuracy, the greater the required
effort. The point at which the hunt-measure-appraise-correct process
really becomes difficult depends largely on desired accuracy and on the
nature of the quantity being measured. In the case of low-frequency
electrical measurements, accuracy on the order of 1 per cent usually calls
for corrections and considerable pains, while accuracies on the order of
0.1 per cent or better represent a formidable challenge.

The ability to detect the presence of a systematic error is of the greatest
importance. For that reason, it is well to expand upon the kinds of sys-
tematic errors that may be encountered in each of the four categories.
Sometimes a general knowledge of the kinds of errors that may oceur
leads the experimenter to uncover them.

5-4. Gross Errors. Gross errors are usually considered to be so obvi-
ous and trivial as to be unworthy of elaboration. However, so long as
human beings are involved, it is inevitable that some gross errors will be
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committed. The problem is perhaps not so much to eliminate them com-
pletely, which is desirable but probably impossible, but to expect and
correct them wherever they occur. While many gross errors are readily
detected, some are surprisingly elusive. Moreover, it is occasionally so
difficult to correct for them that it is easier to repeat the work.

One of the most frequently committed gross errors is treacherous
because it may occur in a multitude of subtle ways that escape the
attention of the experimenter. This is the error of altering or molesting
the quantity being measured by the very act of measuring it. Because
the beginner is especially vulnerable to this type of error and because it
occurs so commonly, it is discussed more fully in Sec. 5-5.

Another common gross error, sometimes very evasive, may be called a
theoretical error. This type of error is committed when an equation used
to calculate a quantity from measured values is based on assumptions
that are not fulfilled in the experiment. An example is given in Sec. 5-6.
Another form of this type of error occurs when theoretical processing of
results is carried out for data obtained under conditions that violate the
assumptions implicit in the theory used. For example, the use of normal-
distribution statistics, presented in the next chapter, may be applied
erroneously to data that are not distributed normally.

A variety of gross errors are attributable to outright carelessness or
sloppy habits such as improper reading of an indicating instrument,
recording a result differently from the actual reading taken, or adjusting
instruments incorrectly. Consider the case of a multirange voltmeter
that employs different numerical designations for each setting of the
range switch on the same set of scale graduations. A reading is some-
times made that does not correspond to the actual range employed. Or
a reading of 74.3 volts, called out by one member of a group, might be
recorded by another as 73.4 volts, especially if done in a hurried manner.
The adjustment screw on a meter, usually provided to set the indication
to zero when the instrument is not energized, is another potential source
of gross error. If it is not set accurately, all readings are thrown off.
Mistakes of this kind, and there are many more, may seem too obvious
to mention. Yet what experimenter has not committed them at one
time or another?

Another category of gross errors pertains to the use of an instrument
in applications for which it was not intended or in which its operational
limits are exceeded. For example, a d-c ammeter can hardly be expected
to give a sensible reading of a 60-cps alternating current. In this case
the error would be readily discerned when zero indication, or needle
vibration about zero, was observed. However, there are many other
instances where false results may ambush the unwary observer. For
instance, a signal generator (oscillator) might be used with the intent of
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providing a sinusoidal source, and the accuracy of all meter indications
might depend upon the purity of the waveform. Yet, the oscillator
might be so heavily overloaded, beyond its designed capability, that the
signal resembles a square wave.

Errors committed in computation of results are not uncommon. This
possibility is present whether the calculations are done by hand, by slide
rule, by desk calculator, or by any other means. There are literally an
infinite number of ways in which they may occur, and the bothersome
thing is that the same individual may make exactly the same errors when
he repeats the calculations. There are many mathematical techniques
for providing independent checks on computed results. Repeated calcu-
lations by more than one individual are sometimes helpful.

5-5. Molesting the Measured Quantity. There are two general
approaches to measuring a quantity, whether the methods be direct or
indirect. They are:

1. Measure the quantity in such a manner that it is not altered by
the method employed. ‘

2. Accept the idea that the quantity will be altered by the measure-
ment process, measure the molested quantity, and then correct for the
disturbance.

The first approach can never be strictly accomplished. There is always
some effect, no matter how small, produced on the quantity when the
environment is changed to measure it. However, this method is useful
in many practical cases where the disturbances are so slight as to be
undetectable, or in cases where they are less than the allowable errors.
The second method is perhaps the more frequent approach when viewing
the over-all field of measurements.

It is essential to appreciate that the measured quantity is inevitably
altered in the process of measuring it. There are many instances in the
development of science and engineering where this effect was overlooked
or ignored, and it happens repeatedly today in both student and pro-
fessional laboratories. It is sometimes a tricky matter to know to what
extent the quantity being measured has been changed. An interesting
example, far afield from electrical measurements but pertinent nonethe-
less, arose in attempting to obtain a measure of the efficiency of a group
of factory workers. A selected group was studied over a period of time
with some rather disconcerting results. The efficiency of the group was
found to increase steadily during the test, as the group put forth more
and more intensive efforts under the atmosphere of having so much atten-
tion paid to them by so many important personages. Needless to say,
a good deal was learned about human behavior, but not much about
their normal efficiency.

In electrical measurements there are many ways to determine the
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degree to which the molested quantity has been changed. For example,
if it is suspected that a resistor being measured is affected by the current
passed through it during the measurement, its resistance may be deter-
mined for several different values of current and compared. Use of two
independent methods is sometimes helpful, especially when it is known
that the quantity is subject to different conditions in the two different
tests. Some other techniques are suggested in Sec. 5-14. Several exam-
ples in which voltages and currents in electric circuits are altered by
insertion of an ammeter or connection of a voltmeter are presented in
Chap. 8. These are typical examples in electrical measurements of
molesting the quantity which is to be measured. Common as they are,
they are often overlooked.

5-6. Voltmeter-ammeter Method. A simple example of a theoretical
error is presented by the voltmeter-ammeter method of measuring d-c
resistance. This is a popular type of resistance measurement method if
high accuracy is not necessary, since the apparatus required is usually
conveniently available. If the voltage, V, across the resistance and the
current, I, through the resistance are measured, then the unknown resist-
ance, X, is given by

v

provided the ammeter and voltmeter are ideal. This implies that the
ammeter resistance, R,, and the voltmeter resistance, R,, must strictly
be zero and infinity, respectively. A theoretical error is committed if
Eq. (5-1) is applied when the assumptions regarding meter resistances
are not satisfied. (All other possi-

ble sources of error are ignored,

R, such as incorrect instrument cali-

bration, heating of the resistance,

Ammeter X, and stray field effects.)

Voltmeter . .
neous readings represent a desira-
ble technique to circumvent flue-

Fra. 5-1. Voltmeter-ammeter method tuations in the d-c supply, of emf
for resistance measurement. E, and internal resistance, R.
Methods may be devised in which the meters are connected sequentially,
but these are also subject to theoretical errors if X is calculated from meter

Figure 5-1 shows two possible

ways in which the voltmeter and

readings inserted into Eq. (5-1). See Prob. 5-4.] If the ammeter resist-
ance is zero and the voltmeter resistance is infinite, the readings will be

the ammeter may be connected for
X simultaneous readings. [Simulta-
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identical for both switch positions, and Eq. (5-1) may be properly used in
either case. For nonideal instruments, an analysis of the circuit leads to a
quantitative expression for the errors that would result from the mistake
of applying Eq. (5-1).

a. Switch in Position 1. The ammeter indicates the current through
X, but the voltmeter reading is high by an amount equal to the drop
across the ammeter. Let the ammeter reading be I; and the voltmeter
reading be Vi. Erroneous application of Eq. (5-1) leads to the false
result X; = Vy/I, where X; is the ‘“apparent’’ resistance and is known
to be incorrect. Let I, be the current through X. Then, I, = [,
Vi =I1,X 4+ R,), and X, is seen to be

_ Vi L(X+ R)

Y= =" =X+ R
Therefore, the per cent error §; in X; is
_ X —Xx)100 R
o = = 100 < (5-2)

This is a positive error since the apparent resistance calculated from Eq.
(5-1) is larger than the actual resistance because the voltmeter reading is
high. The magnitude of the error may be calculated if R, is known.
For example, if B, = 0.01X, the error is 1 per cent. The value of R, is
inconsequential.

b. Switch in Position 2. 'The voltmeter indicates the voltage across X
but the ammeter reading is high by an amount equal to the current
through the voltmeter. Let the ammeter reading be I, and the volt-
meter reading be V.. FErroneous application of Eq. (5-1) leads to the
false result X, = V,/I,. Let I, = Vy/R, be the current through the
voltmeter. Then I, = I, + Vy/R,, Vs = V., and X, is seen to be

_ V. V., _ 1 _ X
-1, I.+V.,/R, 1/X+1/R, 1+ X/R,

Therefore, the per cent error 8, in X, is

_ (X» — X)100 _ 1 100
h="x < <1 VT X/R, 1) 10==71g/x &3

This is a negative error since the apparent resistance calculated from
Eq. (5-1) is, in this case, smaller than the actual resistance because the
ammeter current is larger than the current through X. The magnitude of
the error may be calculated if R, is known. For example, if R, = 100X,
the error is about —1 per cent. The value of R, is inconsequential.

In many cases, instruments may be found that yield voltage and cur-
rent readings whose ratio gives an acceptably accurate result from Eq.

X
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(5-1). However, there is always some error for either arrangement. The
arrangement that leads to the smaller error for a given pair of instruments
and a given X, assuming Eq. (5-1) is used, may be stated succinctly:
If X/R, > (1 + R,/X), use switch position 1; otherwise use switch
position 2.

b6-7. Instrument Errors. A large class of methods of measurement is
that in which the actual deflection of the instrument provides a numerical
result. These deflection methods are all highly vulnerable to instrument
errors, as contrasted with methods in which a null indication is used as a
basis for comparing an unknown quantity with an accurately known
standard. Systematic errors owing to shortcomings or defects of the
instrument employed in making a measurement are normally to be
expected. Therefore, deflection methods are usually avoided when seek-
ing extremely high accuracy. Despite the tremendous improvement
achieved over the last few decades, instrument errors are still inevitable,
and the experimenter must decide whether these errors are small enough
to be tolerated in any given instance.

Many instrument errors are covered under the umbrella of the term
‘‘off calibration,”” which refers to the discrepancy between scale readings
and the magnitudes of the quantity that produced the readings. Errors
in calibration may be an inherent shortcoming of a new instrument, they
may be produced by wear and deterioration of internal elements of the
instrument, or they may be induced by abuse in which components of
the instrument suffer damage.

For each type of instrument there are an enormous number of items
that may produce errors, the details depending upon the particular kind
of device. The proficient experimenter will always take precautions to
ensure that the instrument he uses is operating normally and that it does
not contribute excessive errors. Critical tests of instruments to check
their performance and accuracy may be made in many different ways.
Faults in instruments may sometimes be detected by simple tests in
which the behavior is scrutinized for erraticness, instability, and lack of
reproducibility. An easily applied method is to compare the instrument
with a similar or better one that is known to be reliable. A recommended
method for correcting defects in the case of commercial apparatus is to
return it to the manufacturer for calibration and repair.

To illustrate some instrument ills that may plague the experimenter,
several items that cause errors in pivoted-coil d’Arsonval instruments,
which have been studied in preceding chapters, may be cited. Errors
may arise from erratic pivot friction resulting from worn bearings. Even
if the pivot and bearings are in new condition, errors may arise from this
source in some instruments if they are used in a physical orientation for
which they were not designed. The springs that provide the restoring
torque may undergo change with age and use. The shunt of an ammeter
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or the series resistance of a voltmeter might shift from its correct value
because of abuse, such as extreme overload. The magnetic field in the
air gap could become permanently altered as a result of having exposed
the meter to an intense external magnetic field at some time in its past.
Or, other magnetic effects may cause error, such as use of an unmounted
instrument designed for steel-panel installations. Corrosion may cause
ill effects on delicate metal parts such as coil wire and springs. Finally,
a somewhat subtle example of a source of error in a high-quality meter
(usually employing a mirror mounted in the plane of the scale to avoid
parallax error) may be mentioned. This type of meter usually has slightly
irregular scale graduations owing, for example, to small irregularities in
the magnetic field. The scale is tailor-made during factory calibration.
If the needle on such an instrument becomes bent, it still might be capable
of being zeroed with the screw adjustment provided, but then the scale
is no longer accurate and recalibration is required.

It is virtually impossible for the experimenter to be acquainted with
all the possible difficulties his apparatus may experience. But the com-
petent man should have a general knowledge of the characteristics, capa-
bilities, and limitations of the instrument and should be able to discern
when its errors become excessive for the purpose at hand.

6-8. Calibration of D-C Meters. Direct-current voltmeters and
ammeters may be calibrated in a vari-
ety of ways so that corrections may
be applied to their readings. Sound
methods capable of excellent accuracy
employ a potentiometer as the basic meas-
uring device. The principle of the poten-
tiometer is presented in Sec. 9-5. For
present purposes it may be regarded as a
device capable of accurate measurement
of small voltages (on the order of a volt)
without drawing appreciable current at
its input terminals. This valuable pre-
cision instrument approaches very closely the infinite resistance require-
ment of the ideal voltmeter.

Circuit arrangements for calibrating an ammeter and a voltmeter are
given in Figs. 5-2 and 5-3. In the case of the ammeter, R; is an accu-
rately known standard resistor capable of handling currents over the
entire range of the ammeter without overload. The voltage, E, across
R, is measured by means of a potentiometer, without drawing current.
The ammeter current, I, is given simply by

—|l

Ammeter

To potentiometer

Fi1a. 5-2. Calibration of ammeter
with potentiometer.

E
I=4 (5-4)
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where both E and R; may be known very accurately. The rheostat, R,
may be set to obtain currents covering the entire range of the ammeter.
For each setting of R, the ammeter current may be established by use of
Eq. (5-4) and compared with the reading observed on the ammeter scale.

In the case of voltmeter calibration, resistors R; and R, may be used
to divide down the voltage across the voltmeter by a known fraction so
that it falls within the range of the potentiometer. The voltage, V, across

I

R,

Voltmeter To
Ry E potentiometer

Fi1a. 5-3. Calibration of voltmeter with potentiometer.

the voltmeter is related to the voltage E, measured by the potentiometer
(which does not draw current), by

_ (R1+ Ry)E ,ZEE
y = S (1 + R1> E (5-5)

Thus, it is only the ratio of R, to R, that is important in relating F to V,
and this ratio may be known very accurately. The control, E, may be
varied so that V covers the entire range of the voltmeter. ¥V may be deter-
mined from Eq. (5-5) for each setting of R, and this result may
be compared with the reading observed on the voltmeter under test.

In both of these methods a variety of practical matters contribute to
the achievement of satisfactory results. For example, the supply volt-
age, By, must be stable so that conditions
do not fluctuate during the measure-
ments, and R might actually consist of
two variable elements so that both coarse
and fine adjustments are possible.

Other methods for calibration may be
Ammeter  devised, depending upon the available
_ equipment and required accuracy. For
Fic. 5-4. Voltmeter-ammeter cali- instance, suppose it is desired to calibrate
bration. a voltmeter whose resistance is known.
If an accurate ammeter is available which, by happy circumstance, covers
the current range of the voltmeter movement, the simple method shown in
Fig. 5-4 may be used. It essentially compares the voltmeter with the
ammeter. The voltage, V, across the voltmeter is given by V = IR,
where I is the current read on the ammeter and R, is the voltmeter resist-

Voltmeter
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ance, both quantities presumably known with good accuracy. Alterna-
tively, an accurate voltmeter may be used to calibrate an ammeter in
this fashion.

If the voltmeter current required for full-scale deflection exceeds the
current rating of the ammeter, then an accurate decade resistance, R,
may be used in conjunction with the ammeter as shown in Fig. 5-5. The
voltage, V, across the voltmeter is then given by V = I(R: + R.), so the
ammeter resistance, R,, must also be known (it might be negligible com-
pared with R; in some cases). Hence, the control, R, may be varied to

e

Ry

[fhus

4
=
<

R,

Voltmeter Ammeter

F1a. 5-5. Voltmeter-ammeter calibration.

produce deflections over the entire range of the voltmeter and, with R,
and R, fixed and known, the voltage, ¥V, may be computed from the
accurate ammeter readings. Alternatively, this method may also be used
to calibrate an ammeter by means of a voltmeter.

Another technique might be employed with the arrangement in Fig.
5-5 by conducting all measurements with a fixed value of ammeter cur-
rent, thus relying upon its calibration at only one point on its scale. For
different fixed values of R, the control, R, may be adjusted to produce a
prescribed reading on the ammeter. Then ¥V may be computed as before,
but in this case I is constant and R, is variable, but known. Indeed, it
might be well to apply both techniques to see if there is consistent agree-
ment between them.

In the latter method, corrections for the voltmeter would not neces-
sarily be obtained at cardinal points on its scale because R; is variable
only in discrete steps. While calibration at cardinal points is conven-
tional, there is really no necessity for this. Interpolation for actual read-
ings obtained in practice is required in either case. A correction ‘“curve”
that might be found is given in Fig. 5-6. The correction at each of the
points indicated is equal to the difference between the computed value
of V and the observed reading on the voltmeter. The choppy pattern
followed by this correction curve is typical. It is also typical to find
that the actual correction in volts is the same order of magnitude over
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the entire scale. This means that the error expressed in per cent of the
actual reading becomes smaller, the larger the reading. The accuracy
of most instruments is specified in per cent error for full-scale deflection.
It follows that the instrument may well have larger per cent errors for

1
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Fic. 5-6. Voltmeter correction curve.

smaller readings. Therefore, it is not good practice to use meter readings
that are too close to zero; the upper three-fourths of the scale is usually
considered acceptable.

5-9. Environmental Errors. The physical environment in which an
experiment is performed may have considerable influence upon the results
obtained. The possibilities cover an extremely wide range. On a hot,
humid day the observer may be less patient; the quantity being measured
may change its characteristics with time—in the biological field it might
grow; the instruments used may be disturbed by mechanical building
vibrations. A listing of some environmental influences includes tempera-
ture, pressure, humidity, mechanical vibrations, line-voltage fluctuations,
and a host of other disturbances. If the equipment is light-sensitive,
results might vary from day to night, and a darkroom is indicated. A
soundproofed room is called for if the equipment is sensitive to acoustic
noise. These and many other factors must be taken into account when
effects of environment impede attainment of required accuracy.

These few comments are indicative of the large area included in environ-
mental errors. Every experimenter has his tales to tell about how he
could detect remote trolley cars on his delicate instruments, or how his
meter could be used to deduce the floor at which the elevator in the same
building stopped. Sunspots, too, are mentioned.

While environmental errors are called systematie, it is obvious that
they are not necessarily constant. Indeed, they often, but not always,
are very capricious in their behavior, and getting rid of them may not
be simple. Elaborate means of controlling the environment are used.
Constant-temperature baths, pressurized housings, humidity controls,
line-voltage stabilizers, shock mountings, and shielded rooms are but a
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few of the many control methods. Countermeasures in electrical meas-
urements include such techniques as using twisted lead pairs to reduce
pickup in them from stray fields, instruments designed with temperature-
compensated elements, resistance standards cooled with circulating oil,
and metallic cans for shielding of parts. Experience and luck play no
insignificant role when it comes to winning the battle of the environment.

65-10. Temperature Effects on D-C Meters. The influence of temper-
ature produces an environmental error that has received considerable
attention in the design of d-c meters of the type that have been described
in the preceding chapters. It is found that a d’Arsonval movement is
subject to at least three kinds of temperature effects. These occur in
the restoring spring, the magnetic field in the air gap, and the coil resist-
ance. As the temperature is increased, the restoring torque produced
by the spring is reduced for a given deflection, while the magnetic field
is weakened by a small amount. These two changes have opposite
effects on the sensitivity, as may be seen from the instrument constant,
K = 8/nBA. The spring effect is about twice the field effect, and a
typical net result is about 0.02 per cent per degree centigrade decrease
in K; that is, there is an increase in the deflection for a given current
when the temperature increases. The coil resistance, if made of copper
wire, for example, increases nearly linearly with temperature by approxi-
mately 0.4 per cent per degree centigrade. These and other effects are
taken into account in designing expensive instruments, and attempts are
usually made to use shunt arrangements and materials that give an over-
all zero temperature coefficient in terms of the external terminal charac-
teristics of the instrument. In some designs this goal is approached very
closely.

Without attempting to go into fine detail, it is possible to pursue some
elementary illustrations of the effects mentioned. For example, suppose
a voltmeter contains a series resistance that has a temperature coefficient
of 0.05 per cent per degree centigrade. If the resistance is large, it will
“swamp’’ the coil resistance as well as the electrical resistance of the
restoring springs through which the coil current is passed. Hence, these
latter resistances may be ignored in rough calculations. At a given tem-
perature, the law of deflection of the radial-field instrument is given by
I = K6. If R is the value of the series resistance, the voltage across the
voltmeter will be given by

V = RI = RK9 (5-6)

If the temperature is increased by, say, 20°C, then R increases by 1 per
cent while K decreases by 0.4 per cent. Hence, for the same deflection, 6,
the voltage is now given by

V' = 1.01R(0.996K¢) = 1.006RK¢ (5-7)
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Thus, the voltages across the instrument for the same deflection differ by
0.6 per cent, and the hot meter will read low. This oversimplified exam-
ple suggests that by suitable choice of temperature coefficient for R, com-
plete temperature compensation may be achieved, but additional factors
must be taken into account.

If this same movement is used as an ammeter, Wlthout a shunt, then
for a 20°C temperature rise, the reading will be hlgh by 0.4 per cent for
the same current, and the meter resistance will increase by approximately
8 per cent. If a simple shunt of resistance R., having the same temper-
ature coefficient as the series resistor used in the voltmeter example, is
placed across the movement, the change in coil resistance may be seen to
override the change in instrument constant. Hence, for rough calcu-
lations, the instrument constant may be assumed to be independent of
temperature. The meter current, I,,, for a given temperature is given by

R, I
R T Bl ~TF R./R. 5-8)
If the temperature increases by 20°C, then the coil resistance, R,
increases by 8 per cent while the shunt resistance increases by only
1 per cent. Hence, for the same line current the meter current will be

given by

I, =

o g _ T
™= T+ 1.08R,/1.01R, 1+ L.O7R./R,

Thus, I, is less than in the cold case; the reading will be low. The
per cent difference depends upon the ratio R,/R,. For example, if
R.,/R, = 10, the difference is 6 per cent. Because of oversimplification,
this example may suggest that it might be rather easy to achieve com-
plete temperature compensation by using a shunt having the same tem-
perature coefficient as the meter resistance. In practice, other factors not
taken into account here do not permit so simple a solution to the problem.
‘6-11. Observational Errors. The experimenter himself, ingenious as
he may be in devising his methods, may unknowingly be responsible for
contributing errors to his results because of his habits or his inherent
limitations of observation. Human judgment is also involved, as in esti-
mating fractions of a division in the reading of an instrument. J udgment
is also required when, in a series of repeated measurements of the same
quantity, an isolated result is obtained that seems substantially different
from the others. A decision must be made either to include or to dis-
card such a result. The observer may introduce a systematic error
because of a peculiarity in his sense of timing, making a reading too
early or too late. Or he may introduce parallax error by reading an
instrument along a line of sight different from that used in its calibration.
His experimental technique may suffer because of temperamental traits.

(5-9)



§5-12] ERRORS OF MEASUREMENT 125

For instance, in adjusting a control for a prescribed meter reading he may
become impatient and give up when the adjustment is close, rather than
being persistently painstaking in getting it just right. If the indication
of a quantity being monitored has remained stable for a long period of
time, he may fail to note that it has drifted outside acceptable limits.

The reader will undoubtedly envision a variety of other examples of
observational errors. They are minimized by adhering to a rigid disci-
pline, by alertness, and by an insistence that the job be done correctly
and well. They may be reduced further by having more than one
observer participate. The experimenter is bound to have certain habits
that are part of his equipment as a human being and cannot be avoided.
An example is found in studies of human estimates made of pointer indi-
cations on meter scales. Observers usually can estimate to a tenth of a
scale division. Errors of the estimates depend upon a number of factors
such as pointer width, scale-line width, illumination level, contrast, and
distance between scale lines. An interesting finding is that the observer
tends to display a characteristic pattern of error in his estimates, and the
pattern is different for different individuals.

A matter often overlooked is the relationship between observational
errors and statistical treatment of results. Repeated measurements of
the same quantity may be given useful statistical interpretations with the
restriction that each result is obtained with equal skill and care. The
demand is not only for skill and care but for uniformly high quality
throughout.

The whole subject of observational errors can be a fascinating one for
those whose curiosity is aroused by the interesting limitations displayed
by the human senses. The modern engineering approach to the problem
is to introduce automatic controls and automatic recording equipment to
eliminate the human element, with many attendant advantages. How-
ever, it is far in the future before the need for appreciation of obser-
vational errors may be dismissed so neatly.

65-12. Parallax and Reading Meters. An observer who cocks his head
to one side while reading the scale of a meter may introduce a parallax
error, if the line of sight he uses differs from a direction perpendicular to
the plane of the scale. The perpendicular direction is universally used
for calibration of meters. High-quality meters are provided with a
mirror in the plane of the scale so that the pointer may be lined up with
its reflection in the mirror, prior to reading the scale.

An example will be given in analytical terms for the nonuniform scale
shown in Fig. 3-10. The law of deflection of this instrument was found

to be

K¢
I= cos 8 (5-10)
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Suppose a small error, d6, in the value of 4 is introduced. The size of d¢
depends upon the angle between the observer’s line of sight and the
normal to the scale, and upon the distance between pointer and scale.
Since the scale is nonuniform, the error in the current for a given angular
error of observation will depend upon the magnitude of the deflection.
In this particular case, the larger the deflection, the larger will be the
error in current for a given df. Thus, a parallax error need not repre-
sent a constant error in the quantity being measured.
The differential of Eq. (5-10) shows the way in which d# and the corre-
sponding error in the current reading, dI, are interrelated.
7= % (14 6tan0) do (5-11)
cos @
For meter deflections that are near zero, tan § ~ 6 and cos § =~ 1, so this

becomes approximately
al = K(1 + 62 do 1K1 (5-12)

This shows that the error in the current owing to a fixed angle error, dé,
becomes larger (parabolically) as the deflection, 6, increases from zero.

Equation (5-11) may be expressed in the convenient fractional, or per
unit, form by dividing both sides by 1.

I _ 1+ ptan )Y (5-13)
I 0
A little thought shows that the fractional error in current, dI/1, increases
for a fixed d6 as 0 approaches zero and as § approaches 90°. This means
there is some value of 6 for which the fractional error in current will be
a minimum, assuming that the same error, d#, is committed for all read-
ings. Calculation of this minimum is left to the student in Prob. 5-10.
It might become important in accurate work to ascertain the magni-
tude of errors introduced by reading meters. Perhaps it might be desir-
able to screen out those individuals who do not display accurate and
consistent results. An auxiliary experiment may be performed, as a side
pursuit, to evaluate this source of error. For example, the circuit shown
in Fig. 5-7 may be used to test the operator’s ability to reproduce settings
of a voltmeter to a prescribed reading. It is a convenient circuit, because
the differences among various attempts to set the reading to the same
point on the scale may be quickly and sensitively determined. The
voltage E supplies current for the voltmeter deflection, which is adjusted
by the subject under test using the control, . The battery E; and the
pair of known resistors, By, and R, serve as a stable reference against
which the subject’s performance is compared. Therefore, E; should be
a fresh battery of low internal resistance, R;, and should be checked
periodically for drift.
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The subject is first requested to set the voltmeter to any desired read-
ing by means of R. The operator of the test then closes the switch and
adjusts R, until a zero indication is obtained on the sensitive ammeter.
This establishes the voltage drop across R, equal to that across the volt-
meter. He then opens the switch and alters the setting of B. 'The sub-
ject is now requested to readjust R to the same prescribed reading as

Sensitive
ammeter

{+

Voltmeter

F1a. 5-7. Circuit for measuring reproducibility of meter settings.

before. After he has finished setting R, the operator closes the switch
again. If the sensitive ammeter does not read zero, the subject has not
reproduced the initial reading, assuming E,, R, R, and R, have not
drifted. The operator adjusts K. by a known amount, AR,, until a zero
ammeter reading is obtained. Then the voltage across R, is once again
equal to that across the voltmeter.

The fractional error in the subject’s setting may be determined from
circuit analysis. The initial voltage across the voltmeter was EiRo/
(Ro + Ri + R.), while the second voltageis E1Ro/(Ro + R1+ R: + AR.).
The fractional error, 8, is given by the difference between the second volt-
age and the initial voltage, divided by the initial voltage.

E\R, _ EiR,
6=R0+R1+R2+AR2 R0+R1+R2= — AR,
E.R, Ro+ R1+ R: + AR,
Ry + R: + R:

(5-14)

The negative sign indicates that, if R, is increased (AR, positive), the
second setting was lower than the initial setting. If AR, + R, is very
small compared with R, + R., it may be ignored in the denominator.
The test may be repeated numerous times in order to study the scatter
of the subject’s results and to obtain a more reliable measure of his
consistency.

A more convenient technique may be used to obtain essentially direct
readings of the difference in voltage between the two settings. A large
series resistor of known value is placed in series with the sensitive amme-
ter. Then R, is adjusted after the subject’s initial setting, as before.
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The ammeter current produced by the second setting is then multiplied
by the large series resistance to obtain the voltage difference. Further
adjustment of R, is unnecessary. The result is approximate unless the
series resistance is very large compared with the sum of the input resist-
ance looking rightward toward R, and the input resistance looking left-
ward toward the voltmeter. This is called, appropriately, a differential
method of measurement. A detailed analysis of a very similar circuit
is presented in Sec. 8-16.

5-13. Residual Errors. The result of every measurement is bound to
contain systematic errors, despite most elaborate precautions. If it is
assumed hypothetically that all systematic errors have been eliminated
entirely, or that they are so small as to be negligible, there still remain
certain unavoidable errors arising from sources intrinsically associated
with the quantity being measured or the apparatus employed. These
are called residual errors, and are sometimes referred to as accidental
errors, random errors, or uncertainties. The term “accidental” suggests
that these errors arise from a haphazard combination of a large number
of small events, such as molecular collisions. The term “random”’
implies an erratic nature and irregular behavior, completely free of any
pattern whatever. The term “uncertainty’”’ denotes the effect residual
errors produce in the determination of the quantity being measured.

When the sources of these residual errors are known, it may be possible
in some cases to reduce their effects. For example, a source of random
error in d’Arsonval galvanometers is known to be the chaotic bombard-
ment of the movable coil by air molecules. The resulting Brownian
motion of the coil, observable in extremely delicate high-sensitivity sys-
tems, is exceedingly small and usually not bothersome. However, one
could conceive of placing the galvanometer in an evacuated chamber to
reduce this effect. (For this reason, one might argue that the Brownian
motion is, after all, an environmental error but it is not normally classi-
fied as such.) Even when sources of the residual error are not known,
it is sometimes possible by empirical methods to partially suppress the
random effects without affecting, at the same time, the quantity being
measured.

The contributions of residual errors in electrical measurements are
usually very small in a well-designed experiment. (This is not true of
all fields in which measurements are made.) For this reason they are
not usually considered in low-accuracy work. However, they become
increasingly important as the quest for accuracy is intensified. For
example, vacuum tubes may be used in electronic instruments for low-
accuracy measurements with considerable success, but such devices may
become completely unsatisfactory for high-accuracy work. Random
effects inherent in the tubes, traceable to irregularities in emission of
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electrons from the cathode, may become intolerable. Similarly, the emf
resulting from thermal agitation of electrons inside a resistor, commonly
called the ‘““noise’” voltage, may be a significant source of uncertainty in
many types of electrical measurements and is inevitably associated with
every resistor. The square of the noise voltage is given by

¢? = 4RKT Af  volts? (5-15)

where R is the resistance in ohms, k¥ is Boltzmann’s constant (1.38 X
102 joule per °K), T is the temperature in degrees Kelvin, and Af is the
bandwidth in cyecles per second. If other conditions permit, the thermal
noise voltage may be reduced by decreasing the temperature, the value
of the resistance, or the bandwidth. Of course these maneuvers are
acceptable only if they do not influence the quantity being measured.
Apart from the uncertainties created in high-accuracy work, random
fluctuations are also important in placing an upper practical limit on
performance that may be obtained in electrical devices. TFor instance,
the upper usable limit of amplification in electronic voltage amplifiers
(devices that produce an output voltage larger than the input voltage)
is fundamentally determined by the ‘“noise” associated with the ampli-
fier input.

Uncertainties introduced by residual errors that defy the experimenter
to the last may be treated by application of statistical methods. Having
reduced all systematic errors to an acceptable minimum, the usual pro-
cedure is to carry out numerous repeated measurements of the same
quantity, each with equal skill and care. A statistical study of the
scatter, or dispersion, of the results leads to an estimate of the quantity.
that may be inferred to be more accurate than any single measurement.
Statistical techniques may be employed whether the results are scattered
symmetrically or unsymmetrically about some central value. A fre-
quently found type of symmetrical dispersion is called a normal distribu-
tion. However, a theoretical error is committed by using statistical
methods applicable to normal distributions for results that are not nor-
mally distributed. .

6-14. Avoiding Errors. A summary of some items that may lead to
improved accuracy is presented below. The extent to which these are
important depends upon the necessary accuracy and what the measure-
ment problem deserves in terms of time and expense.

a. Comprehension. There is no substitute for a thorough understand-
ing of the characteristics, limitations, and normal performance of every
piece of apparatus used, nor for a basic theoretical understanding of all
features of the over-all measurement problem itself. The experimenter
should be capable of evaluating the soundness of various methods in
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quantitative mathematical terms and should be capable of devising
alternative methods. Theoretical estimates of anticipated results should
be compared with actual findings.

b. Technigques. A few of the many techniques that may be employed
include replacement of a suspected instrument by another similar one,
interchange of two similar instruments, deliberate change of a single
parameter to observe its separate contribution to the over-all result,
use of two different independent methods to measure the same quantity,
use of multiple observers, monitoring and control of conditions to main-
tain them within required limits, and repeated measurements of the same
quantity.

¢. Disciplines. Use planned procedures, work carefully and unhur-
riedly, record measured values directly and in orderly fashion, record all
pertinent details of experimental arrangement and conditions.

PROBLEMS

5-1 (§4). The uniform-field instrument with a nonuniform scale, shown in Fig. 3-7,
has an instrument constant K = 1.0 amp per radian. The ‘““zero’”’ of the meter has
not been adjusted correctly ; for zero meter current the meter falsely indicates I = 0.1
amp. When this meter is energized, it indicates a current I = 1.50 amp. Compute
the actual value of the current.

5-2 (§5). In order to measure the direct current in a wire, a 5-amp meter is con-
nected in series with it and indicates 4.0 amp. When the 5-amp meter is replaced by a
10-amp meter, the reading is 4.2 amp. Both meters are known to be accurate, and
each produces full-scale deflection for a 50-mv instrument drop. What is the value
of the current in the wire when neither meter is in the circuit?

5-3 (§5). The voltage existing across two terminals of a linear d-¢ network is first
measured with voltmeter A, rated 10 volts full scale, 500 ohms per volt, and then
(after disconnecting A) with voltmeter B, rated 20 volts full scale, 500 ohms per volt.
Meter A indicates 10 volts and meter B indicates 10.9 volts. What is the open-circuit
voltage across the two terminals?

5-4 (§6). With the switch in position 2 of Fig. 5-1, the voltmeter (of resistance R,)
indicates a reading V., when the ammeter is short-circuited. When the voltmeter is
removed from the circuit entirely, the ammeter (of resistance R,) indicates a current
1,, when its short circuit is removed. Assume E and R are constant. (a) Determine
the relationship between the ratio V1/I; and the resistance X. (b) If R = 0, does
V1/I, yield a correct result?

6-5 (§6). In the voltmeter-ammeter method (see Fig. 5-1), demonstrate that if
VR, < 2 \/R,, which is usually satisfied, then the value.of X required for the same
magnitude of error in either switch position is the geometric mean of B, and R,.

5-6 (§6). If the average of the two resistance values computed from Eq. (56-1) for
the two switch positions of Fig. 5-1 is used, what will be the per cent error of the result?
For what value of X, in terms of R. and R,, will the average be exactly equal to X?

6-7 (§8). A 0 to 50-volt voltmeter is calibrated using the circuit of Fig. 5-5. R,is
set to each value listed on page 131 and then control R is adjusted, for each R,, to
produce a reading of 1.0 ma on the accurate ammeter, whose resistance is B, = 8.0
ohms. Voltmeter readings corresponding to each value of R, are also given.
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R,, kilohms Voltmeter reading, volts
10.00 9.7
20.00 19.5
30.00 29.9
40.00 40.2
50.00 49.8

Plot a correction curve of the type shown in Fig. 5-6.

5-8 (§8). For the correction curve in Fig. 5-6, compute the voltmeter correction as a
percentage of the scale reading for each of the experimental points indicated.

6-9 (§10). In the ammeter example of Sec. 5-10, include the change in instrument
constant of 0.02 per cent per degree centigrade, and assume R,./R, = 2. (a) Deter-
mine the ratio of line currents such that the same instrument deflection is obtained
at the two temperatures which differ by 20°C. (b) Compare this result with that
obtained by ignoring the change in K.

6-10 (§12). If the small parallax angle error, d6, is constant for all readings of the
uniform-field meter discussed in Sec. 5-12, for what angular deflection, 8, of the instru-
ment is the corresponding per cent error in the current a minimum?

5-11 (§12). Determine an expression for the fractional error in the meter-setting
reproducibility test described in Sec. 5-12 if R, is changed to R, + AR,, rather than
changing R.. Which adjustment, B, or R,, is more sensitive for a given error in
resetting the meter reading?

5-12 (§14). Give an example of an electrical measurement error, and its classifica-
tion, that might be avoided by use of each item listed under “techniques” for avoiding
errors in Sec. 5-14.



CHAPTER 6

STATISTICS AND ERRORS

The application of statistical methods to the data of measurements is
a widespread procedure. It permits the best value of a quantity to be
estimated from repeated, independent determinations and provides ana-
lytical measures of the uncertainty of final results. The combined effect
of errors in various independent quantities from which results are calcu-
lated may also be estimated quantitatively. Beyond these direct appli-
cations, statistics also has value in prediction. The ability to estimate,
on the basis of sample data, what to expect in situations that have not
been explicitly studied in detail is indeed a powerful technique. More-
over, the statistical nature of the physical world may often be understood
only in statistical terms; thus, statistics is a fundamental subject in its
own right.

Many experiments require a large number of measurements before
statistical methods and interpretations become meaningful. Also, it is
essential that all systematic errors be small compared with residual errors,
especially because statistical treatment of data cannot remove a fixed bias
contained in all measurements.

6-1. The Mean of Raw Data. Let vy, v2, . . . , v, be a group of n
independent determinations of a quantity. The symbol v; (where ¢ = 1,
2, . .., n) is used because each of the v; members of the set is called a
variate in statistical work. The group of n variates constitutes the raw
data. The v; may differ from each other because of either systematic or
residual errors.

These data may be described in a number of ways. One method is to
tabulate all n of them and pass them on to your supervisor. This will
test his patience no end, especially since he wants to know the result in
a nutshell. Another plan is to give a few salient features of the data.
While less complete than the full tabulation, this achieves brevity and
utility, if done properly, and usually there is no loss in significant infor-
mation about the data.

The mean of a set of variates, v;, is defined as

5=%(vl+va+'~~+vn)=%zvi (6-1)
i=1

132
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This is the sum of all the individual variates divided by the total number
of variates. The mean is synonymous with the terms ‘‘ arithmetic mean”
and ‘“‘arithmetic average.” The single number % conveys one of the most
important features of the data, and in some cases might be all that is
necessary. But the detailed information contained in the raw data has
been lost when 7 alone is presented.

The mean does not necessarily represent the ‘“best value’ of the
quantity measured. For example, if the raw data were unreliable to begin
with and highly influenced by systematic errors, the mean could still be
computed from the defining Eq. (6-1), but it would be of limited signifi-
cance. On the other hand, if the differences among the »; are believed
to be entirely attributable to residual errors, the mean is usually assumed
to be the “most probable value,” or “best value,” of the quantity. To
deserve this interpretation, it is necessary to ensure that all gross errors,
instrument errors, and environmental errors have been reduced to accept-
able levels and that each v; has been determined with equal skill and care
using unbiased human techniques.

Single quantities other than the mean are sometimes used to describe
the entire set of n variates. The median of a set of variates is equal to
that variate for which there are equal numbers of variates greater than
and less than that variate. Thus, if the variates are listed in ascending
or descending order, the median is located at the middle of the list. (If
n is even, the median is specified as lying between two variates, if these
two variates are not the same.) The mode of a set of variates are those
variates that occur more frequently than their neighbors. A set of vari-
ates may have more than one mode, but if one mode is dominantly more
popular than the others, the smaller modes are sometimes ignored, espe-
cially if attributable to residual variations. When the variates display
a single mode, they are called unimodal. .

The mean, median, and mode of a given set of variates are not neces-
sarily equal numerically. The mean is the usual quantity dealt with in
electrical measurements.

6-2. Deviations. The mean has more significance from a statistical

point of view than appears on the surface of the grammar-school idea of
arithmetic average. The basis of the use of the term ‘“best value” or
““most probable value” is found in terms of quantities called devia-
tions. Study of the deviations gives insight into the role played by the
mean.
- Let v be an arbitrary number subtracted from each of the n variates.
The deviation of a variate, v;, from this arbitrary number, v, is defined as
Yi = v; — v. It is simply the difference between the variate and some
other number, and may be a positive or negative quantity. The devi-
ations for the n variates may be listed.
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Y1 =01 — 0V, Yo =02 — 0, « « « yYn =0Vp —V
The sum of the n deviations is

n

i+ y:+ - +yn=zyi=(vl+vz+---+v,.)—nv

t=1

Now if the number » has the property that the sum of the deviations is
zero, then

0=@i+ove+4+ -+ +ov) —nw

and the resulting v is
1
v=_(@itoat - Fon) =10

Thus, it is seen that the mean is that number for which the sum of the
deviations is zero. As such it may be thought of as the ‘“best value’” of
the quantity around which positive and negative deviations are equally
likely to occur and to balance out to zero.

The deviation. from the mean of the variate v; will be designated by

X =v; — D (6-2)

The preceding development constitutes a proof that the sum of the devi-
ations about the mean must be zero, for any set of n variates.

xXr; = 0 (6'3)

NSt

1

[

7

In other words, the sum of the deviations of variates less than the mean
is always precisely equal in magnitude to the sum of the deviations of
variates greater than the mean.

Another viewpoint, based on the squares of the deviations, also leads
to a satisfying rationale for ‘“most probable value.” It is commonplace
in statistics to develop mathematical relations by methods in which a
minimum is imposed on the sum of the squares of the deviations. For
example, in the method of least squares used for fitting a curve to a given
set of points, a ‘“best” fit is established by demanding that the sum of
the squares of the deviations between the curve and the given points be a
minimum.

By application of the principle of least squares, it may be shown that
the mean is that number with respect to which the sum of the squares
of the deviations is a minimum. This may be proved by taking the devi-
ations from any number, », and then investigating which value of v leads
to a minimum of the sum of the squares of the deviations.
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Designate the deviation of a variate, v;, from an arbitrary v by
yi = v; — v, as before. The square of the deviation is

yd = (v, — v)? = v — 200 + 02

The sum, 8, of the squares of all n deviations is

n n

S=21yi2= Z viz—2vzv.-+m)2

t=1 i=1

Now let v be variable and find that value of v which makes S a minimum,
by imposing dS/dv = 0. Since all the »; are constant,

ds \
= _2,Zlvi+2m)_0

Thus, for minimum sum of the squares of the deviations,

12 _
)= - V; =10
n

It is because of this property of the mean that it may be called the “most
probable value.”

It should be emphasized that these properties of the mean based on
relationships to the deviations do not ensure that the mean is the best
estimate of the quantity being measured. These same properties hold
rigorously for any given set of n variates, whether the variates are
trustworthy or not and regardless of how the variates are distributed.
Indeed, these properties hold for any arbitrary group of n numbers.

6-3. The Spread of Raw Data. All the detail of the n variates is lost
when a single number (such as the mean) is used to summarize the raw
data. It is customary to express results in the form

b+ S (6-4)

as the next simplest manner of providing further information. The
quantity & conveys information about the extent by which the variates
differ from their mean. There are at least four quantities commonly
used for 8, and they each give information concerning the spread or dis-
persion of the data about the mean. These measures are particularly
revealing when the data are unimodal.

The limit of error, L, is defined as the value of § = L such that all
variates of the set of data lie between 3 — L and # + L. There is no
reason to expect the upper and lower limits of error to be the same for a
given set of variates. Sometimes the larger limit is used for both. Since
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5 + L encompasses all the variates, limit of error obviously represents a
very conservative statement of the spread of the data.

Unequal limits of error may be used, if desired. 1In fact, in such cases
as tolerance of machine parts, it is customary to specify unequal limits
on a dimension. For example, the specification 2.500 +3-393 signifies that
parts meeting these specifications will lie between 2.490 and 2.502. Once
the parts are made and measured, the mean is not necessarily equal to
2.500. In this case, 2.500 is called the nominal value.

The probable error, P, is defined as the value of 8 = P such that half
the variates lie between # — P and o + P. Thus, the variates included
between & + P represent that half of all the variates which cluster about
the mean. There need not be an equal number of variates above and
below the mean within this group, as in the case of variates not dis-
tributed symmetrically about the mean. Obviously, P can never exceed
the limit of error, L.

Two other quantities used for & are defined in terms of the deviations
from the mean, z;. The average deviation, A, is the value of & = A
defined in terms of the magnitudes of the deviations by

n

A=t D=2 W ©9)

i=1

The bars around z; signify the absolute value of x;, which is the value of
x; with its minus sign, if any, deleted. Obviously, this deletion of sign is
important; otherwise a zero result would be obtained as shown by Eq.
(6-3). Thus, A is the arithmetic average of all the n deviations taken
without regard to sign. While the average deviation never exceeds the
limit of error, L, it may be equal to, greater than, or less than the proba-
ble error, P, depending upon how the variates are distributed.

A fourth quantity used for 8 is called the standard deviation, o, and is
the usual choice in most scientific work. Tt is discussed more fully in
Sec. 6-4.

The four possibilities for § are generally unequal numerically for any
given set of variates. Therefore, it is important to know which definition
of & was used when a result is given in the form of Eq. (6-4). In the
absence of a definition, it may be assumed that & is the standard devi-
ation, although P is often used by engineers. Despite the differences
among these various 8, they all possess the following properties:

1. If all the deviations, x;, are zero, 8§ = 0.

2. All n of the variates, and their corresponding deviations, are
included. :

3. The dimensions of 8 are the same as those of .

The third property suggests that the result of the n determinations
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may be expressed in terms of fractional dimensionless quantities, thus:

1‘)_-I;6=z')<1i§> (6-6)

v
The quantity é/7 is a dimensionless fractional measure of the extent by
which the variates differ from their mean. Per cent errors, used fre-
quently, are 100 times these fractional errors.
6-4. Standard Deviation. The standard deviation, o, is the value of
8 = o defined in terms of the squares of the deviations from the mean by

6='Jni1(x12+x22+..'+x"2)=Jn}_12xi2 (6_7)

i=1

The square of the standard deviation is called the variance, 2. Since
the squares of the deviations are used in the definition of o, the signs
of the negative deviations are automatically eliminated. Moreover,
larger deviations are thereby emphasized more than smaller ones. For
this reason, the standard deviation is usually larger than the average devi-
ation, A4, and the probable error, P. Therefore, it represents a more con-
servative measure of the spread of the data but is not as pessimistic as L.

The standard deviation is essentially a root-mean-square quantity, so
familiar to the electrical engineer in connection with alternating currents
and voltages. Indeed, if n>> 1, the standard deviation is numerically
equal to the root-mean-square deviation, defined by replacing n — 1 by
n in ¢. Even with n as small as 25, the rms deviation is only about
2 per cent less than the standard deviation. For this reason, the rms
deviation is frequently called the standard deviation. This is not unrea-
sonable because ¢ is usually small compared with 7, and the distinction
becomes a second-order matter of an error in the error. However, it is
considered good scientific practice to use the more conservative measure,
o, especially for small n.

It is natural to inquire why the simpler rms deviation is not generally
acceptable. The reason for the n — 1 factor, rather than n, is based on
the fact that # is not an independent quantity, but one derived from the
variates. For example, with n = 2, the mean and two deviations may
be computed, but the deviations are equal in magnitude. Thus, there is
only one independent deviation forn = 2. By extension, there aren — 1
independent deviations for n variates. This suggests why the factor
n — 1 is employed, rather than n, which is also indicated by other sta-
tistical considerations not presented here.

Finally, it is desirable to point out that, contrary to statements found
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in many engineering treatments of the subject of errors, the standard
deviation and not the probable error is today the widely accepted
quantity used for 8. While the probable error did at one time enjoy
limited popularity in the United States, its use has been condemned by
many workers in a variety of fields where statistical treatment of data is
employed. Substantially all scientific results are now stated in terms
of standard deviation, but engineering texts have lagged behind this
practice.

6-6. Grouped Data. When variates are gathered together into sub-
categories, the data are said to be grouped. Grouped data are often used
for two very sound reasons: (1) the amount of computation required to
determine ¥ and ¢ may be reduced greatly, especially when n is large,
and (2) the data may be presented in a pictorial form from which their
salient features may be easily grasped. Grouped data are also worth
investigating for conceptual reasons. A logical path is opened toward
ideas in probability and distribution functions, which are highly useful
concepts.

Grouped data are formed from raw data by the following procedure.
The total interval over which the variates lie is subdivided into smaller
intervals called ranges. The ranges are usually chosen to be equal in
length and are specified by their midpoints. All variates within a given
range are then lumped together and assigned the same value as the range
midpoint. This is the key move that simplifies calculations without
serious loss in accuracy. If the selected ranges are small compared with
the total interval, the accuracy is excellent, but more ranges are required
to cover the total interval and, hence, more calculations. Larger ranges
demand less calculation but there may be some loss in accuracy. There-
fore, choice of range is a matter of judgment in which a compromise
between desired accuracy and computational effort is sought. To avoid
question about the range in which a variate lies, it is desirable to have no
variates coincide with the end points of the ranges. If some variates do
coincide with the range end points, half of them may be assigned to the
higher range and the other half to the lower range.

Let v, designate the midpoint of the rth range of width A»,. The num-
ber of variates, n,, lying within the range Av, is called the frequency of the
variate and is designated by f(v.) = n,. Functional notation is used
because 7, is a function of », which changes by discrete amounts as r
ranges over its integral values. Since f(»,) is simply the number of occur-
rences of »; within the range Av,, it is always a whole number. For a total
of R ranges that span the complete interval over which the variates lie,

R

z ny = i @) = n (6-8)
r=1

r=1
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This expresses the fact that the sum of the number of variates in each
of the ranges must be equal to the total number of variates, n.

The variates in any range, Av,, are generally scattered above and below
the range midpoint, »,. Therefore, these variates may each be assigned
the value »,, usually without serious error, if the ranges have been chosen
wisely. The sum of all the variates is then given approximately by

n
5 -
i=1 T

Insertion of this result into Eq. (6-1) shows that the mean is given
approximately in terms of the range midpoints and the frequency of the

variate by
R
b= E o f(0) (6-10)

n

r=1

R

oA

R
VN, = 2 v, f (vr) (6-9)
r=1

=1

The deviation from the mean of a range midpoint, v,, is z, = », — 7, and
there are n, such deviations associated with variates that have been
assigned the value v, within the range Av,. Consequently, the sum of
the magnitudes of all the deviations is given approximately by

R R

2 | = 2 lor — Bln, = 2 |2 £, (6-11)

=1 r=1

and the sum of the squares of the deviations in terms of grouped data is
approximately

§ -

i=1

Thus, the average deviation, Eq. (6-5), is given approximately by

R
O = DPn = Y 72 ) (6-12)
1 ’ Z1 !

r=

D=

r

R
A= E 2] f(v.) (6-13)
r=1

and the variance [the square of Eq. (6-7)] in terms of grouped data is
given approximately by

R
P Z 2 f(vr) (6-14)

-1
r=1
A detailed summary of calculations for both raw data and grouped
data is given in Table 6-1 for a hypothetical set of 20 variates. The
variates have been listed in ascending order. The range midpoints are
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TABLE 6-1. ExaMPLE oF GROUPED DaTa
Raw data* Grouped datat
7 v; z z? | r | oo | f(o) | of() x, z:f(vr) | 2:f (0r)
1 100.4 —4.0|16.0 1| 100 1 100 | —4.3 | —4.3 18.5
21101 0 0 —3.3 0 0
2 101.9 —2.5 6.3
3 102 2 _2.9 48 3 | 102 2 204 | —2.3 | —4.6 10.6
4 102.8 —1.6 2.6
5 103.0 —-1.4 2.0
6 103 3 —11 1.2 4 | 103 4 412 | —1.3 | —-5.2 6.8
7 103.3 —-1.1 1.2
8 103.9 —-0.5 0.3
9 104.3 —-0.1 0 5| 104 3 312 | —0.3 | —0.9 0.3
10 104.4 0 0
11 104.9 0.5 0.3
12 104.9 0.5 0.3
13 105.2 0.8 0.6 |6 | 105 5 525 0.7 3.5 2.5
14 105.3 0.9 0.8
15 105.4 1.0 1.0
16 105.7 1.3 1.7
17 106.1 1.7 2.9 |71 106 3 318 1.7 5.1 8.7
18 106.4 2.0 4.0
19 107.0 2.6 6.8 | 8 | 107 1 107 2.7 2.7 7.3
20 107.6 3.2 110.2 |9 | 108 1 108 3.7 3.7 13.7
14.5 15
Sums |2,088.0 —_14.5 63.0 20 2,086 —15 68.4
* Raw data: o = 2’02808 0_ 104.40 t Grouped data: & = 2’—3()8& = 104.3
_2(14.5) _ _2(15) _
A %0 1.45 A = 50 = 1.5
63 68.4 _
c = 9 = 1.8 [ 19 1.9
—4.0
P=11L= {+3.2



§6-6] STATISTICS AND ERRORS 141

whole numbers varying from 100 to 108, and equal ranges, Av, = 1.0,
are employed. Thus, for example, the three variates in the interval
104 + 0.5 lie within range r = 5, and are assigned the range midpoint
value v, = 104 and the frequency f(v,) = 3. Even with a small n = 20,
the economy in calculation resulting from grouping the data is evident
from Table 6-1. For larger n, it is even greater. Moreover, the results
of calculations of the mean, 7, the average deviation, 4, and the standard
deviation, ¢, from both raw and grouped data using the equations that
have been presented, may be seen to be in close agreement in this example-
A pictorial display of the grouped data is given in Fig. 6-1. Thisis a
bar graph with bar heights equal to fon)
the frequencies, f(v,), and bar widths
coinciding with the ranges Av,. This
graphical representation is called a
histogram or a frequency-distribution
graph. It conveys a readily grasped
picture of the distribution of the var- |
iates. This has been accomplished ‘_l SN l .
by suppressing the identity of the 100 101 102 103 104 105 106 107 108
individual variates within a given v
range. A graphical representation of

o = N W P~ O

r

each individual variate by a line seg- I “ " | |l "” ” | I
ment erected at each value of v; is 100 101 102 103 104 105 106 107 108
shown below the bar graph. The Uy

latter method of portraying data is F1c. 6-1. Histogram of grouped data of
sometimes used, but it can be seen Table 6-1.
that this is less satisfactory in terms of the over-all picture conveyed.

6-6. Normalization of Histogram Ordinates. Since the bar heights
of the histogram are equal to the number of occurrences of v; within a
given range, it is to be expected that if n is increased, the bar heights will
- generally increase. For example, if n is doubled to n = 40, the his-
togram might be similar to that shown in Fig. 6-2, which is hypo-
thetical but represents what might actually be found in practice. The
variation from bar to bar has been smoothed out to some extent, and
the total interval over which the variates now lie is slightly larger than
in the case of n = 20. Hence, the number of occurrences of »; in each
range has not exactly doubled.

Comparison of these two histograms is somewhat hampered by having
bar heights in one which are generally larger than bar heights in the
other. An improvement results from the application of a rather logical
normalization procedure. If each bar height for a given histogram is
divided by its n, then the two histograms will have identical bar-height
scales, and the comparison is clarified. The normalized bar height for
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floy)
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r ] n=40
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Fic. 6-2. Illustrating effects on histogram of increasing n.

f(vr) flv,)
n n
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02F  po20 0.2- n=40 ’
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F16. 6-3. Normalized histograms.
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each histogram is equal to the fraction of the total number of variates that
lie in a given range. Normalized histograms showing f(v,)/n are given in
Fig. 6-3. It is apparent that if n is increased further, the histogram bar
heights of Fig. 6-2 will increase, but those of the normalized histogram
will have heights comparable to the cases shown in Fig. 6-3, assuming
that Av, is held constant. The quantity f(v,)/n is a highly significant one
in statistics. It is equal to the probability of occurrence of a variate in
the range Av,, as discussed in the next section. For this reason, the
normalized histogram is called the probability histogram, and the term
probability distribution is used for f(v,)/n, which might be expected from
use of the term frequency distribution for f(v,).

6-7. Probability. It is customary to define probability in terms of
‘“events.” Events may be a wide variety of things. Simple examples
are the numbers on a pair of dice or the colors of black and white balls.
Events may also be variates, which means that probability may be
applied to almost any measurable entity. Probability is defined in terms
of events with the important provisions that the events are equally likely
and independent. Equally likely events are those in which there is no
way to tell exactly which one of all possible events, in the class of events
under consideration, will occur in a given instance. Independent events
are those in which the occurrence of one does not affect the occurrence
of any others.

Suppose that of a total of E equally likely, independent events, a
certain number, E;, of these events is considered to be favorable. The
probability that a favorable event will occur is defined as

p(E:) = % (6-15)

where p(E;) is read “probability of occurrence of E,” or, more briefly,
‘“‘probability of E;”” If E consists of k separate portions that cover all
possible events, then

%
E=E1+E2+"'+Ek=in (6-16)
i=1

Thus, it is seen that E; can at most be equal to E, and it follows that
p(E;) can never exceed unity. Moreover,

}k: p(E) = 2 Bie 10 (6-17)

i=1

which states that the sum of the probabilities of all possible events must
be equal to unity. Thus, in the case of a finite number of events, a
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probability of untty implies ‘‘certainty,” and a probability of zero implies
“impossibility.”

The definition of probability may be applied to the grouped data to
show that f(v,)/n is the probability that a variate will lie in the range Av,.
Suppose that each of the 20 variates of Table 6-1 is written down on a
separate slip of paper and that all 20 slips are placed in a hat. What is
the probability of drawing a slip that designates a variate in a given
. range Av,? In this case, the events are the variates, and the favorable
events are those variates which lie in the range Av,.

From the definition of probability,

ploy) = T = 1®) (6-18)

where n, = f(v,) is the number of slips of paper in the hat marked with
variates in the range Av,, and n is the total number of slips of paper in
the hat. Thus, it is seen that the bar heights of the histogram are, when
divided by n, equal to the probability. Moreover, it follows from Eg.

(6-17) that
R R
z p(v,) = Ef(_zl = % =10 (6-19)
r=1 r=1

This states that the 20 variates must lie somewhere in the total interval
spanned by all R ranges.

It is evident from Fig. 6-3 that p(v,) depends to some extent on mn,
especially for small n. As n increases, the ratio f(v,)/n, which is the
probability, tends to decrease because the total interval over which the
variates lie tends to increase. But f(»,)/n tends to become more stable
the higher the n. For any finite n, no matter how large, f(v,)/n still
depends to a slight extent on n.

6-8. Continuous Curves Representing Distributions. The dependence
of the frequency distribution f(»,) on the number of variates is largely
overcome by dividing f(»,) by n. However, the resulting probability dis-
tribution, p(v,), is still open to an objection. While the bar heights have
been made relatively insensitive to n, they are still strongly dependent
on the range, Av,. For example, if in a given probability histogram the
ranges, Av,, are all doubled, the height of all bars will approximately
double. This is so because the frequency, f(v,), for a doubled range will
be approximately doubled, while n remains the same. Similarly, if the
ranges are all halved, the heights of the bars will be approximately halved.
An illustration of this effect is given in Fig. 6-4.

- For a finite number of variates, the bar heights are not exactly pro-
portional to Av,, because of the scatter of the individual »; within the
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ranges. For example, consider two adjacent bars of unequal height span-
ning a range 2 Av,. If a new range (2 Av,) spanning these same bars is
used, the bar covering (2 Av,) will have a height equal to the sum of the
heights of the two unequal adjacent bars. For large n, the ratio of bar
height to Av, tends to be constant, provided Av, is not too small.

fluy)

16 T

14+ n=100 1
12 | Avr=1 fluy)
10F — 10+

8r 8 =100 o Ave=%

100 102

1 1 1

1 L i 0
106 108 110 100 102 104 106 108 110

Up Uy

104
F1c. 6-4. Illustrating effects on histogram of changing Av,.

A function may be defined that is approximately invariant with respect
to both n and Av, by dividing p(v,) by Av.

y(vr) — p(vr) —_ f(vT) (6_20)

Av, n Av,

It is called a probability-distribution function. A bar graph of y(»,) vs. v,
may be constructed as before. An example is shown in Fig. 6-5. The

over-all contour of the resulting bar graph will be relatively insensitive
to both n and Av,. For large n and small Av,, the bar widths will be

very narrow and will display very small steps between adjacent bars.
Thus, y(»,) approaches a smooth curve as n is increased and Av, is
decreased, provided that Av. is not too small.

The probability-distribution function, y(»,), or the corresponding con-
tinuous curve, y(v), is commonly encountered in statistics. Conse-
quently, it is important to understand how it is related to probability.
In the case of a probability-distribution histogram, the probability that
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a variate lies in the range Av, is given by the height of the bar located on
the range Av,. But in the case of the probability-distribution function,
the probability that a variate lies in the range Av, is given by the area
of the bar located on the range Av,. This is clear from Eq. (6-20).

p(v,) = y(v,) Av, = area of bar of height y(v,) and base Av, (6-21)

To find the probability that a variate lies in a range that is an integral
multiple of Av,, it is merely necessary to add the separate probabilities

0.18f+

0.16

T

n=100

0.14

0.12

fv,)
nlv,

0.10

yop)=

0.08

0.06

0.04

0.02

1

1 i

1 1 1 1l
104 106 108 110

v

n 1
100 102

r

Fi1g. 6-5. Probability-distribution functions for histograms of Fig. 6-4.

associated with each bar. This follows from Eq. (6-15), where it can be
seen that with p(E:) = E./E and p(E,) = E./E, the probability that
both E, and Es occur is
B+ By _ By By _

7 — 7 T = PE) + p(E) (6-22)
This may be extended to any number of ranges. Therefore, the prob-
lem of finding the probability that a variate lies in an interval that is
large compared with Av, may be formulated as the sum of many small
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bar areas. To illustrate, suppose the probability of occurrence of vari-
ates between the two range midpoints v; and v, shown in Fig. 6-6, is
desired. For simplicity, assume that the interval between v, and vy is
subdivided into k equal intervals, Av. This is justified if n is large because
the probability-distribution function, y(»,), has been deliberately defined
in such a manner as to be relatively insensitive to the range width. Thus,
there is no restriction on the difference between the range midpoints »;
Shaded bar area=

A
A 5‘ / ylv,)Av=plv,)

Continuous ZZ SV

curve
ylv)

T

ylu) I

2] Av—~| |~ v,
U
F1c. 6-6. Tllustrating determination of probability over finite interval.

and v.. Denote p(vi,vx) as the probability of finding a variate in the
range lying between »; and »,. Then,

p,or) = pvr) + pv2) + - - - + p(ve)
= y(v1) &v + y(s) Av + - - - + y) Av
k
= E y(v,) Av (6-23)

r=1

6-9. Integral Forms. The summation in Eq. (6-23) may be expressed
in terms of an integral, by allowing Av to approach zero. The definition
from integral calculus may be used:

k
Alg}) ,Zl y@,) Av = L l y(@) dv (6-24)
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where y(v) is the continuous function approximated by the bar heights.
Therefore, the probability that a variate lies between v, and v; is given in
integral form by

pse) = [ y) do (6-25)

Two special cases of this important result are worth noting. If
vx = v1 -+ dv, then the probability of finding a variate in the range db,
between v, and v; + dv, is

Py, v1 + dv) = y(v) dv (6-26)

This is the differential form of Eq. (6-25). The probability of finding a
variate somewhere in the range — o < » < © must be 1.0. Since this
corresponds to v1 — — » and vx — o, it follows from Eq. (6-25) that

p(— w0, o) = f_: y(@) dv = 1.0 (6-27)

The area under the probability-distribution function must be unity.

Other integral relations may be developed by considering the limit
of the sum, replacing y(v.) by the function y(v). The mean may be
expressed as an integral by starting with Eq. (6-10).

b= Z 0 ) = z 0p) = z by (02) Ao

all r all r all r

Passing to the limit, with Av — 0,

7= / _: vy@) dv (6-28)

Similarly, the average deviation may be expressed in integral form, start-
ing with Eq. (6-13).

A= ,,ll 2 |z, f(vr) = E o, — 5'?/(”1') Ay

all r all r

Let Av — 0.
A= /_: lv — Bly@) dv (6-29)

For the integral form of the variance, start with Eq. (6-14),

g 0] = ) = 0 ) e

n
all r all »
and let Av — 0.

o? = f_: v — 9)? y(v) dv (6-30)
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An integral expression for the probable error, P, is obtained by speci-
fying two limits, »; and v, that are symmetrical about the mean and
between which half the variates lie. The probability of finding a variate
between such limits is one-half, since half the events are favorable. With
v1 =0 — P, vy = 5 + P, and p(vi,vx) = 14 in Eq. (6-25), the integral
expression for probable error is

Y = f_f y(@) dv (6-31)

The integral forms that have been developed are applicable to a variety
of probability-distribution functions, y(v), the only restriction being Eq.
(6-27). These relations have been developed by assuming n to be large
enough, and Av, to be small enough, so that an essentially continuous
probability-distribution function is obtained. Then the limit of the sum
could be expressed in integral form. An alternative point of view is to
define the various quantities 7, 4, ¢, and P in terms of continuous prob-
ability-distribution functions to begin with, using the integral relations
that have been derived here. The case of finite n is then regarded as an
estimate of the theoretically continuous case.

6-10. The Gaussian Error Curve. The entire development in this
chapter so far is applicable to various shapes of the probability-distribu-
tion function, y(v). The definitions and relations obtained are useful for
multimodal data, for skewed distributions (which are unsymmetrical
about 7), and many others.

There are numerous functions, y(v), that have been found useful in
practice. These include Chi-squared distributions, ¢ distributions, F dis-
tributions, Poisson distributions, and Bernoulli distributions. One prob-
ability-distribution function known by a variety of names such as the
Gaussian distribution, Gaussian law of error, and the normal error curve,
will be examined in detail. It frequently gives a good description of
many results found in nature that are affected by random errors. Care-
fully performed repeated measurements follow this particular distribution
in many cases. The equation of this probability-distribution function is

y@) = \L/ M0t B>0  (6-32)
T

The factor h is called the precision index and will be discussed subse-
quently. This probability-distribution function may be derived from
theoretical considerations by several different methods. The student is
urged to consult one of the many textbooks in which such a development
may be found.

A graph of y(v) vs. v is given in Fig. 6-7. The Gaussian distribution is
seen to be a bell-shaped curve centered on 4. Let z = v — % be the devi-
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ation from the mean. This change of variable represents a shift in the
abscissa origin to zero at.v = #, as shown in Fig. 6-7. Because this shift
does not change the shape of the function, it is commonly expressed in
terms of x as

(@) = % e h>0  (6-33)

Four important characteristics of y(z) or y(v) are worthy of emphasis
since they are helpful in probability applications.

7—1 T v+L

v 7 v v 7 v
1 1 I

1 0 1
h 7 *

Fia. 6-7. The Gaussian error curve.

a. Maximum Value. It may be seen, by inspection, that the maximum
value of y(z) is h// and occurs at z = 0 (or v = 7).

b. Symmetry. If z is replaced by —=z in y(z), the value of y(x) is
unchanged. Hence, y(z) is an even function, symmetrical about z = 0
(or v = 7).

c. Area under Curve. The total area under the Gaussian curve is
given by

- ) % [
Total area = z) do = —= My = — e dyp
[Cvee= [T v Jo
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From a table of integrals, one finds

/ et dy = —2‘/—’_' a>0 (6-34)
0 a
Therefore, Total area = —2—\/h_ <\_2/_’:_r) = 1.0

™

The result of unit area under the Gaussian error curve may have been
expected because Eq. (6-27) holds for many different distribution curves.
Indeed, in the theoretical development of the Gaussian error curve, the
multiplying factor h/+/7 is derived by insisting that Eq. (6-27) be
satisfied.

d. Width. If the convenient values of x = +1/h are selected, then
the function y(x) is seen to fall to 1/e of its maximum value, h/ /=,
when ¢ = +1/h. Hence, for large k the curve is narrow and the peak is
high; for small & the curve is broad and the peak is low. Under all
circumstances the area remains constant and equal to 1.0.

Each of these four characteristics has a corresponding probability
interpretation when y(v) represents the probability-distribution function
of a set of variates. Recall from Eq. (6-25) that the probability that a
variate lies in the range between v, and vy is given by

i) = [ y0) do (6-35)

and represents the area under the probability-distribution function
between ordinates at v; and v,. The same probability may be expressed
in terms of deviations, with x; = v; — 9, x = v — ¥, and dv = dx.

PO10) = plarz) = [ y() da (6-36)

a. Marimum Value. The probability that a variate lies in a range
centered on the mean is greater than the probability that a variate lies in
any other range of equal size.

b. Symmetry. The probability that a variate lies within a given range
about any deviation z is identical with the probability that a variate lies
in an equal range with a deviation —z.

c. Area under Curve. The probability of finding a variate somewhere
in the range —«© < 2 < o« is unity. [This is not peculiar to the
Gaussian curve; see Eq. (6-27).]

d. Width. The probability that a variate lies in a given range becomes
less as the deviation of the range becomes. greater. For a given devi-
ation, x, the probability is less the greater the h, and vice versa. Thus,
the name precision index is reasonable. A large h represents high pre-
cision of the data because the probability of occurrence of variates in a
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given range falls off rapidly as the deviation increases; the variates cluster
into a narrow zone. A small h represents low precision of the data
because the probability of occurrence of variates in a given range falls off
gradually as the deviation increases; the variates are spread out over a
wide zone.

Additional properties of the Gaussian error curve may be found by
evaluating the integral forms for the specified function, y(v). The follow-
ing definite integrals, found in a table of integrals, are useful in addition
to the one presented in Eq. (6-34):

/ ze dr = 14 / 2 dx = vV (6-37)
0 0

These in combination with change of variable, as necessary, lead to the

establishment of definite numerical relations among 4, ¢, and h. The

detailed integrations are left as problems at the end of the chapter.
From Eq. (6-28),

3 0 h
7= vy) dv = v -— M0 gy 6-38
[ = [T v (6-38)
one finds consistency; 7 = 7. That is, the mean of y(v) is 0.

From Eq. (6-29),

A= / " o= Bly@) dv = 2 / R T (6-39)
— 0 '\/7['
one finds 4 = 1/h\/m.
From Eq. (6-30),

® ® h
= v — 0)2y@)dv = 2 2t —= M dy 6-40
o= [T w00 [ = (6-40)
one finds ¢2 = 1/2h%

The probable error is determined from the integral form given in Eq.
(6-31) by use of the probability table, as shown in the next section, where
the result is found to be P = 0.4769/h.

Thus, it is seen that A, ¢, and P have specific values in terms of A
and are uniquely related to each other. For the Gaussian error curve,
the standard deviation is larger than the average deviation which is
larger than the probable error. The following ratios, of the many which
may be formed from the results, are frequently useful:

P 06744 i— = 1.253 (6-41)
ag

The precision index, h, is related to quantities calculable directly from
the raw data, and it may be determined for any normally distributed set
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of variates. A plot of the Gaussian error curve superimposed upon the
histogram of the grouped data is sometimes used to give a pictorial idea
of the degree to which the variates fit the normal-probability function.

6-11. Probability Tables. The probability that a variate lies between
v; and vy, is given from Eqs. (6-25) and (6-32) by

p1,0e) = / " —h—— e dy h>0 (6-42)
?1 T
provided the Gaussian error curve is a reasonable approximation to
the probability-distribution function of the variates. The parameters
= 1/4/2 ¢ and 7 may be calculated from the raw data.

Evaluating this integral is a formidable task. However, widespread
use of the Gaussian error curve has justified the preparation of tables
by skilled computers. These tables may be used to evaluate any inte-
g-al once the limits have been specified, and a knowledge of ¥ and & is
not required. For greater utility, the variable » is changed to a different
variable and normalized so as to be useful for any particular k and 7.

The probability given in Eq. (6-42) depends upon four parameters,
vy, Uk, b, and . This number may be reduced by the following substi-
tutions:letz = » — 5, andlett = \/2h(v — 7) = v/2hx = /5. These
substitutions shift the origin of the curve so that its peak coincides with
x = 0 = ¢, and introduce an abscissa that is measured in units of ¢. This
follows because the deviation, z, is equal to of; viz., x = 0,t = 1; 2 = 20,
t = 2. With these substitutions, the probability becomes

1 tk
p(vlyvk) = p(tl)tk) = TZI‘ ‘/; 2 dt (6'43)

where #; = /2 h(v; — %) and & = /2 h(vx — 7). This may also be
written

1 tk 1 11
le) = —— 2 gt — —— —t2/2 (¢t 6-44
pt) = /0 T e (6-44)

Each of the integrals in Eq. (6-44) is a function of a single parameter,
i or t;. Consequently, values of the integral

12
p = 71‘2_;/(; 2 dt (6-45)

may be tabulated, as in Table 6-2, and used to compute the probability
for any specified limits, #; or &. Tabulated values of the integral repre-
sent the area under the normalized Gaussian error curve between ¢ = 0
and ¢ = ¢, as shown in Fig. 6-8. Since the curve is symmetrical, the same
table may be used for negative deviations; replacing ¢ by —¢ in Eq. (6-45)
does not affect p.
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TABLE 6-2. AREAS oF THE GAussiaN Error CURvVE
Table gives values of the area under the curve between the ordinates

at ¢t = 0 and ¢.

Example: Area = 0.1331 for { = 0.34.
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.4778
. 4826
. 4865
. 4896
.4920

.4940
.4955
. 4966
.4975
.4982

.4987
4991
.4993
.4995
. 4997

. 4998
. 4999

1059

4999

.0080
.0478
.0871
. 1255
.1628

.1985
.2324
.2642
.2939
.3212

.3461
.3686
.3888
.4066
. 4222

.4357
.4474
.4573
. 4656
. 4726

.4783
.4830
.4868
.4898
.4922

.4941
.4956
.4967
.4976
.4983

.4987
.4991
.4994
.4996
. 4997

.4998
.4999
.4999
.4999

.0120
.0517
.0910
.1293
.1664

.2019
.2357
.2673
.2967
.3238

.3485
.3708
.3907
. 4082
. 4236

.4370
. 4485
.4582
. 4664
.4732

.4788
.4834
.4871
.4901
.4925

.4943
. 4957
. 4968
. 4977
.4983

.4988
.4991
.4994
.4996
. 4997

. 4998
.4999
.4999
.4999

.0160
.0557
.0948
.1331
.1700

.2054
.2389
.2704
.2996
.3264

.3508
.3729
.3925
. 4099
. 4251

.4382
.4495
.4591
.4671
.4738

.4793
.4838
.4875
.4904
.4927

.4945
. 4959
.4969
.4977
.4984

.4988
. 4992
.4994
. 4996
. 4997

. 4998
.4999
.4999
. 4999

.0199
.0596
.0087
.1368
.1736

.2088
.2422
2734
.3023
.3289

.3531
.3749
.3944
.4115
.4265

.4394
.4505
. 4599
.4678
4744

. 4798
. 4842
.4878
.4906
.4929

.4946
.4960
.4970
.4978
.4984

.4989
. 4992
.4994
.4996
. 4997

.4998
.4999
.4999
.4999

.0239
.0636
.1026
. 1406
1772

.2123
.2454
.2764
.3051
.3315

.3554
.3770
.3962
.4131
. 4279

. 4406
.4515
.4608
. 4686
. 4750

.4803
. 4846
.4881
.4909
.4931

.4948
.4961
.4971
.4979
.4985

.4989
.4992
.4994
. 4996
.4997

.4998
.4999
.4999
.4999

.0279
.0675
.1064
.1443
.1808

.2157
.2486
.2794
.3079
.3340

.3577
.3790
.3980
.4147
4292

.4418
. 4525
.4616
.4693
. 4756

.4808
.4850
.4884
4911
.4932

.4949
.4962
. 4972
.4980
. 4985

. 4989
.4992
.4995
.4996
. 4997

.4998
.4999
.4999
.5000

.0319
.0714
.1103
. 1480
.1844

.2190
.2518
.2823
.3106
.3365

.3599
.3810
.3997
.4162
.4306

. 4430
. 4535
.4625
.4700
. 4762

.4812
.4854
. 4887
.4913
.4934

.4951
.4963
.4973
.4980
.4986

.4990
.4993
.4995
.4996
.4998

. 4998
.4999
. 4999
.5000

.0359
.0754
.1141
.1517
. 1879

.2224
.2549
.2852
.3133
.3389

.3621
.3830
.4015
. 4177
.4319

. 4441
.4545
.4633
.4706
. 4767

.4817
. 4857
.4890
.4916
.4936

.4952
.4964
.4974
.4981
. 4986

.4990
.4993
.4995
. 4997
.4998

.4998
.4999
.4999
. 5000
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The student should be cautioned that probability tables of the Gaussian
error curve are not all the same. Some tabulate twice the area repre-
sented by Eq. (6-45) and are, therefore, the probability of occurrence
between symmetrical deviations about the mean. In other cases, a differ-
ent abscissa normalization factor is employed; for example, the variable
u = t/4/2 is used instead of ¢. In this case the abscissa is measured in
units of 1/h, since x = u/h. A further variation is found in tables that
give the area between { = — « and ¢.

()

Shaded area=p
t 2

- 2
p—\/z_#fe dt

o

-3 -2 -1 0 1t 2 3
t=

alx

F16. 6-8. Graphical representation of probability.

Several examples of the use of Table 6-2 are presented below. It is
assumed that the probability-distribution function of the variates is the
Gaussian error function. Suppose it is desired to find the probability
that a variate lies between % and % + ¢. The deviations corresponding
to these limits are z; = 0 and x, = o, respectively. Hence, ¢; = 0 and
te = 2x/o = 1. Thus, the probability is given by the integral

1 1
P s [) o dt (6-46)

The table indicates the result p = 0.3413, listed for f = 1.0. Because of
the symmetry of the Gaussian error curve, it follows that an equal prob-
ability exists for a variate between the limits # — ¢ and 5. Hence, the
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probability that a variate lies between ¥ + ¢ and # — ¢ is the sum of
these two equal probabilities, 0.6826. Since the area under the entire
curve is 1.0, it follows that about 68 per cent of all variates lie within
plus or minus one standard deviation from the mean. An exactly similar
use of the table for « = + 3¢ leads to the conclusion that p = 0.9974.
Hence, there are only 2.6 chances in a thousand that »; will lie more than
three standard deviations from the mean.

Another way in which the table may be used is illustrated by deter-
mining the expression for the probable error in terms of ¢ (or A). This is
the inverse of the case above, for it is known that the area between sym-
metrical limits about the mean must be one-half, and it is necessary to
find the corresponding value of {. Half of this symmetrical area lies to
the right of the origin; hence, the desired ¢ is given in the table for an
area of 0.2500. Referring to the table, it is found that interpolation is
necessary, the two closest values of ¢ are 0.67 and 0.68 for areas 0.2486
and 0.2518, respectively. By linear interpolation,

0.0014

t = 0.67 + 0.0032 (0.01) = 0.67 + 0.0044 = 0.6744 =

Qg

(6-47)

Next, the probability that a variate lies in a range between 7 — 0.85¢
and 7 4+ 1.76¢ will be found as an exercise. The areas of interest are
shown in Fig. 6-9. To obtain area A, to the left of the origin, enter the
table with ¢ = 0.85 and find A; = 0.3023. To obtain area A, to the
right of the origin, enter the table with { = 1.76 and find A, = 0.4608.
The probability that a variate lies somewhere between the limits is the
sum of the two areas, 0.7631. It can also be deduced from these same
numbers that the probability that a variate lies between the deviations
z = 0.85¢ and 1.76¢ will be the difference 0.4608 — 0.3023 = 0.0585.
The same result will hold for variates lying between deviations
z = —0.85¢ and —1.766. It can further be seen that the probability
that a variate lies in the range between ¢ = 1.76¢ and £ = <« is given by
the area A; = 0.5000 — A,, which is 0.0392.

As a final example, consider a criterion due to Chauvenet for discard-
ing an isolated variate which seems to have fallen outside reasonable
limits for no apparent reason. The criterion is that the variate may be
rejected if its probability of oceurrence is less than 1/2n, where n is the
total number of variates. How many standard deviations away from
the mean must the variate be, to be rejected as a maverick? For the
case of n = 100, the corresponding value of 1/2n is 0.005. Thus, to find
the deviation that a suspect variate must exceed, it is necessary to find
that value of ¢ which represents symmetrical limits for which the area
under the entire curve is 0.995. Or, a half area of 0.4975. The value
of ¢ found in the table is ¢ = 2.81. Thus, if a suspicious variate lies more
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than 2.8 standard deviations away from the mean in a sample of 100
variates, it may be rejected. The criterion for rejection demands a
larger deviation for a larger n. Chauvenet’s criterion, or any other, for

i

Ar

1 1 1
-3 -2 -1 0 1 t 2 3

-0.85 ¢ 1.76

Fia. 6-9. Illustrating probability calculations.

rejection of data must be used with extreme caution. There is always a
danger of rejecting a valid piece of data which might be the only one of
real interest in the group.

PROBLEMS

6-1 (§1). Computing the mean, 7, is often facilitated by selecting any convenient
number, K, and then calculating the mean using the formula

<
I

(v: — K) + K

S =

it

1

Prove that # in this formula is identically the same as in defining Eq. (6-1) for any
arbitrary number, K.

6-2 (§2). Consider the first nine integers, from 1 to 9, to be a set of variates. (a)
Compute the mean. (b) Demonstrate that the sum of the deviations from the mean
is zero. (¢) Compute the sum of the squares of the deviations from the mean. (d)
Demonstrate that the sum of the squares of the deviations from the number 4 exceeds
the result in part (c).

6-3 (§4). Computing the rms deviation is often facilitated by selecting any con-
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venient number, K, and then using the formula

B i o= Ky = (& - 02 |
i=1

Prove that this formula is identically the same as that for the rms deviation

1 \ %
25 e
i=1
for any arbitrary number, K.

6-4 (§4). In measuring an emf with a potentiometer, the following five independent
readings were obtained, in volts: 1.485, 1.478, 1.480, 1.482, 1.483. Assuming that all
readings are of equal weight, find the best value to take for the emf, and the per cent
standard deviation.

6-6 (§5). Compute 3, 4, and o for the variates given in Table 6-1 by forming four
groups with range midpoints 101, 103, 105, and 107. Compare with results at bottom
of Table 6-1.

6-6 (§5). A resistor rated nominally at 1,000 ohms was measured 60 times under
identical conditions. The data were grouped as follows:

Resistance Number of
value, ohms times obtained
993 and below 0
994 1
995 2
996 4
997 7
998 10
999 13

1,000 10
1,001 7
1,002 3
1,003 2
1,004 0
1,005 1
1,006 and above 0

(a) Find the median, mode, and mean. (b) Compute the standard deviation. (¢)
What percentage of the readings were within two standard deviations of the mean?
6-7 (§9). A probability-distribution function is given by

k

y = é E—klzl

where |z| signifies the magnitude of z, and k > 0 is a constant. (a) Prove that the
area under the entire curve is unity. (b) Determine the relationship between the
probable error and k. (c¢) Is this a useful distribution function?

6-8 (§10). Show that the integral of Eq. (6-38) works out to be .

6-9 (§10). Evaluate the integral of Eq. (6-39) and thus prove that A4
for a normal curve.

6-10 (§10). Evaluate the integral of Eq. (6-40) and thus prove that o
for a normal curve.

1/A/x h
1//2h
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6-11 (§10). Prove that the points of inflection of the Gaussian error curve lie at
z = to.

6-12 (§11). The value R = 92.2 + 0.1 ohm is specified for a batch of 1,000 resistors.
How many of them would you estimate have values in the range B = 92.2 + 0.15
ohm? Assume normal distribution.

6-13 (§11). An underdamped d’Arsonval galvanometer was energized 100 different
times under the same carefully controlled experimental conditions, and the maximum
deflection was read in each case. The readings were normally distributed about a
mean value of 26.3 mm and had a probable error of 2.5 mm. How many of the 100
readings would you estimate exceeded 30 mm?

6-14 (§11). A machine shop manufactured 25,000 steel rods of nominal length
0.400 in. which were not to exceed 0.401 in. and not be shorter than 0.398 in.; i.e.,
the limit of error specification was

0.4003:003 13-
It was found that 2,000 of the rods were too long to fit into a gage set to 0.401 in.
Predict the number of the remaining 23,000 rods which will conform to the specifi-
cations, assuming normal distribution.
6-15 (§11). In a scholastic aptitude test the following results were obtained for a
sample of 100 students:

Number of students...... 0 5 25 40 24 6 0
Grades received were
between.............. 0-50/|50-70(70-90(90-110|110-130({130-150| 150 and higher

Assuming the above sample is a random selection from a group of 2,000 students who
took the test, how many of the 2,000 students would you estimate received grades
greater than 1507

6-16 (§11). A resistor manufacturer received a customer’s order for 50,000 pre-
cision resistors of nominal resistance 10,000 ohms, which were not to exceed 10,025
ohms and not to be less than 9,950 ohms. The manufacturer made a sample batch
of 1,000 resistors, and it was found that 80 resistors of this batch exceeded 10,025
ohms. Assuming normal distribution, (@) predict the number of the remaining 920
resistors which will conform to the specifications, (b) predict the total number of
resistors the manufacturer would have to make to obtain 50,000 which meet cus-
tomer requirements, assuming the sample batch of 1,000 resistors is representative.
(Assume that the sample batch of 1,000 resistors is thrown away after test.)

6-17 (§11). A manufacturing company made 10,000 ball bearings in connection
with a certain customer’s order. The customer had specified the ball-bearing diameter
as 0.1000%3:000 12 where the tolerances stated are limits of error. The 10,000 ball
bearings were passed through a ““go-no-go’’ gage which was set to pass diameters of
0.101 in. or less. 200 failed to pass. How many of the remaining 9,800 ball bearings
will meet the customer’s requirements? (Assume normal distribution.)

6-18 (§11). Using Chauvenet’s criterion for rejection of an isolated variate display-
ing a large deviation, determine enough points to plot a curve of |v,, — #|/o vs. n, for
different values of n between 20 and 200. The magnitude of the deviation the variate
must exceed to be considered for discarding is |v, — 7).

6-19 (§11). A current, I, used for electrolysis was measured 1,000 times with the
same equipment and under identical conditions. No reading was greater than 255
amp and none was less than 245 amp. The arithmetic mean of all the readings was
250 amp. It was found that the following normal distribution curve could most
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closely approximate the histogram of the grouped data:
y) = \/0'2826 €—0.2826(/—250)%
T

(@) Find the standard deviation. (b) If the actual distribution of the current read-
ings was described exactly by the above theoretical equation, how many readings
were less than one standard deviation from the mean, and how many were less than
three standard deviations from the mean? (c) What is the probability that the
1,001st reading will lie less than two-thirds of a standard deviation away from the
mean?

6-20 (§11). The following data were taken for the demand for electric power in a
region where it is desired to build a new generating station. The data were taken for
10 working days chosen at random.

Megawatts, Megawaldts,
maximum mazimum
Day demand Day demand

1 2.0 6 2.9

2 1.2 7 1.8

3 2.1 8 1.6

4 2.3 9 2.0

5 3.1 10 2.6

(a) Plot a histogram of these data. (b) Determine the mean and standard deviation.
(¢) What capacity generating station (in megawatts) must be built if it is to be able to
supply the full regional demand for power on 84 per cent of the working days, requiring
the transmission of some power from outside sources on only 16 per cent of the work-
ing days? Assume that the future demand may be predicted by a normal distribution
curve based on the above sample.



CHAPTER 7

COMBINATIONS OF ERRORS

The mean and standard deviation may be computed for a given set of
variates as indicated in the preceding chapter. The set of variates may
be described compactly in the form # + ¢. The mean is inferred to be
the best estimate of the quantity and, for a normally distributed set,
approximately 68 per cent of all variates lie within +o of the mean.

Further study of statistical treatment of data is necessary to explore
the estimated uncertainty of the mean itself, and the estimated uncer-
tainty to be expected in a quantity computed from others which have
specified errors. These two matters are closely related, and both require
investigation of combinations of sets of variates.

7-1. Mean of the Sum of Two Sets. As a preliminary step, the intui-
tively acceptable result will be established that the sum of two independ-
ent sets of variates has a mean equal to the sum of the means of each set.
The proof consists of writing out the sum and then dividing by the total
number. The compact summation notation is very useful, but the stu-
dent may wish to write out the summations in detail, since they are com-
plicated by the fact that two sets of variates are involved.

Let vy, v, . . . , 0, be a set of n variates, and let wi, ws, . . . , wy be
an independent set of k variates, where k and n are not necessarily equal.
The mean of the first set is

17=12m i=12,...,n
n N

and the mean of the second set is

W—%zw, i=12 ...,k

i=1

|

Denote the sum of two variates, one chosen from v; and the other from wy,
by

S =V T w (7-1)
This is called a sum set. There is a total of nk different variates in the

sum set for all possible combinations of 1 and j. Consequently, the mean
161
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of the sum set is

- 1 1 1
S = ’I_’I,TC Z (U; + w]‘) = ;LTC 2 v; + ’rﬁ{;— 2 Wj (7"'2)
%7 1] 03

where z indicates summation over all ¢ and j. However,

0

IS
S
|
=
s
S
I
oy
S
<

=
<.
.

-

w; = nkw

oA
&
I
3
DA

Similarly,

.
I
-

©J
Therefore, it has been proved that the mean of the sum of two sets of
variates is equal to the sum of the means of each set.

§=0+4+w (7-3)

7-2. Variance of the Sum of Two Sets. The preceding result is uti-
lized in proving that the variance of the sum set, s;; = v; + wj, is approxi-
mately equal to the sum of the variances of »; and w;. The variance of
the v; set is

The variance of the sum set is very nearly

1 < 1 P — 1
a2 = nk z (s — 8)% = nk Z (i + w; — 9 — w)* (7-4)
W] 3

using the result of Sec. 7-1. Recall from the previous discussion of the
n — 1 factor in the standard deviation that the deviations in a set, v; — 7,
have one less degree of freedom than the number of variates in the set.
Hence, there are actually less than nk degrees of freedom in the deviations
s; — 5. In this development, however, it is assumed that both n and k
are much larger than 1, in which case the error introduced in Eq. (7-4) is
negligible.

The student may wish to write out the squares of the deviations of the
sum set in detail. The compact summation notation will be employed

here. Expand
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E(v,—v—l-w,—w)z—z(v,—v)2+22(v,-—v)(w,— w)+z(w,—w)2
%) %)

However, z (v; —0)* =1k (v; — 9)? = k(n — 1)o,? = kno,?
i

D

(w] — w)? = nlk — 1)«7,,,2 = nkoy,?

by 122

Similarly, 2 (wj — w)2=n

Also, z (v — B)(w; — @) = z (v; — ) z (w; — ®) =0

since the sum of the deviations from the mean is zero. Therefore, the
variance of the sum is very nearly

g2 = 0,2 + 0,2 (7-5)

Thus, it has been proved that the variance of the sum of two sets is
approximately equal to the sum of the variances of each set.

The significance of o, is basically the same as that of ¢, or o,. For
example, with a normal distribution, approximately 68 per cent of the
nk variates in the sum set lie within + o, of the mean of the sum. Alter-
natively, if one variate is picked at random from v; and another is picked
at random from wj, their sum has 68 chances in 100 of lying within +o,
of the mean of the sum, provided that the distribution is normal.

7-3. Extensions and Interpretations. The result for the variance of
the sum of two sets is the cornerstone on which the remaining discussion
is based. For that reason it is well to examine its extensions and to
interpret the extended results from a probability viewpoint.

Relations for the difference between two sets follow directly from the
preceding developments and may be established directly by replacing
w; by —w;. Then the difference set is d;; = v; — w;. It follows immedi-
ately that the mean of the differences of two sets is equal to the differ-
ence of the means of each set:

d=19%—1w (7-6)
Moreover, examination of the steps in the variance development reveals
that the variance of the difference of two sets is approximately equal to
the sum of the variances of each set, as before:

Ud2 = U.;2 =+ O'wz (7'7)

All these results are immediately extensible to more than two sets of
independent variates. It follows, therefore, that for p independent sets
of standard deviation o1, 02, . . . , 0p, the variance of the sum set, formed
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by adding one member from each set, is given approximately by
=0 F a2+ - o 42 (7-8)

An interpretation of this result is that if one variate is selected at random
from each of p sets, then the probability that the random sum lies within
* o, of the mean of the combined set is about 0.68, provided that the dis-
tribution is normal. Thus, there is available a measure of the likelihood
that the randomly selected variates lie within a given range from the
mean of all possible combinations of selectees.

This result may be extended one step further by recognizing that the
standard deviation of a set of variates each of which is ¢ times as large as
those of some original set, where ¢ is a constant, is ¢ times the standard
deviation of the original set. The proof is simple. The standard devia-
tion of the original set is

1
n—1

Oy =

n
(v: — 7)?
i=1

If each of the v; of this set is multiplied by ¢, then the mean of the new set
is ¢d and the standard deviation of the new set is

\/n 1 . E (cvs — cB)? = ca (7-9)

=1

which is ¢ times the standard deviation of the original set.

In using this to extend Eq. (7-8), consider p independent sets, as before.
Form a sum set consisting of one variate from each of the p sets and,
further, multiply each of the variates by a different constant in defining
the sum set (c; for the first set, c; for the second set, . . . , ¢, for the pth
set). Then it follows from Eqgs. (7-8) and (7-9) that the variance of this
sum set is approximately

0. = (c1o1)? + (c02)® + * * + + (cpop)? (7-10)

This final result will be used to establish the standard deviation of the
mean, and in the discussion of combinations of errors arising in calculated
quantities.

7-4. Standard Deviation of the Mean. It is reasonable to expect that
the mean of a set of variates should provide a more reliable estimate of
the quantity than does a single variate. To illustrate this qualitatively,
suppose n repeated determinations of the same quantity are carried out.
Then the set of n variates has a unique and calculable mean. If a second
group of additional determinations of the same quantity is obtained, the
second set of variates will usually have a mean that differs somewhat
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from the mean of the first set. However, the discrepancy between the
two means may be expected to be less than the differences among the
variates of either set, assuming that equal skill and care have been exer-
cised throughout. Extending this reasoning to a large number of such
sets, the corresponding large number of means will, in themselves, con-
stitute a set. The dispersion of these means around their average will be
less than the dispersion displayed by the individual variates of a given set
about their average. In other words, the standard deviation of the mean
will be less than the standard deviation of an individual variate.

A quantitative expression for the standard deviation of the mean may
be obtained by using a somewhat different approach. From a statistical
viewpoint, each of the n variates of a given set may be thought of as
having been selected at random from a large group of standard devi-
ation ¢. (This large group is called the ‘‘population” in statistics.)
Accordingly, the mean of a set of n variates

AN, _nm v .
5 z Dty gl (7-11)

i=1

may be looked upon as one of many possible sums consisting of n vari-
ates selected at random from » sets, each with the same standard devi-
ation, s. Each of the selected variates is multiplied by the same constant,
¢ = 1/n, before forming the sum, 5. The variance of the sum set, of
which 7 is a typical member, is equal to the sum of the variances of each
of the n sets and is given by Eq. (7-10) with each of the constants set

equal to 1/n and each of the variances set equal to ¢2.

S ORIC Rt PG

But this is the variance of 5. Therefore, the standard deviation of the
mean is

g
o5 v (7-13)
Thus, by use of statistical reasoning, it has been possible to deduce an
expression for the standard deviation of the mean without actually obtain-
ing and analyzing a large group of different means. By doing some think-
ing, labor has been conserved.

The alert reader will detect a potential difficulty involved in applying
Eq. (7-13) to a set of n variates. The standard deviation appearing in
Eq. (7-13) is the standard deviation of the entire group of all possible
variates and is not necessarily equal to the standard deviation of a set
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of n variates selected at random from the entire group. However, if the
sample is large, n >> 1, it is plausible to expect that the standard devi-
ation of the set is reasonably close to that of the entire group. Hence,
the standard deviation of the set of n variates may be used in Eq. (7-13)
for purposes of estimating the standard deviation of the mean.

An important practical principle may be gleaned from Eq. (7-13) by
observing that the standard deviation of the mean diminishes rather
slowly as n is increased. For example, a hundredfold increase in n will
give only a tenfold improvement in the estimated uncertainty of the
mean. Therefore, there is usually some n arrived at in practice which is
not worth exceeding for a relatively small improvement in accuracy.

The results may be interpreted in terms of a simple illustration. If
the standard deviation of a normal set of 100 variates is 1.0 and the mean
is 8.0, then 68 per cent of the variates lie between 7.0 and 9.0, and the
standard deviation of the mean is 1.0/4/100 = 0.1. The probability is
0.68 that a single variate chosen at random from the 100 variates will lie
in the range 7.0 to 9.0. Moreover, the probability is 0.68 that a group
of 100 new variates from the same population will have a mean lying
between 7.9 and 8.1.

Another more intricate interpretation is sometimes useful. If a normal
set of variates has a mean # + o,, then the probability is 0.68 that another
set with a mean  lying between & + o, and & — ¢, comes from a popu-
lation with the same mean. For example, suppose on one day an experi-
ment yields a mean of 100 + 2 ohms, where 2 ohms is the standard
deviation of the mean. Then, a week later a mean of 96 ohms is obtained.
Since the second mean differs from the first by two standard deviations,
the probability is only about 0.05 that the experimental setup has
remained unchanged during the week.

7-5. Errors of Computed Results. A problem frequently encountered
is the estimation of the error in a quantity computed from some known
function of several variables each of whose errors is specified. For
example, the value of the average power, P, dissipated in a resistor, R,
may be computed from measurements of the current, I, through the
resistance, R, using the known function P = I?R. But what is the error
in P if the errors in I and R are given?

In general, each of the measured quantities used in the calculation of a
result is subject to error. If the errors of these quantities are specified,
it is then possible to estimate the error in the computed result. This is
true for any functional relationship and for any number of independent
variables. Except in very simple cases, however, it is expedient to make
an approximate determination of the error in the computed result.

As a simple example, suppose [; = 100 + 2 amp and I, = 200 = 5
amp, and it is desired to determine the error in the sum I = I, + I
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If the stated errors are limits of error, L, the maximum and minimum
values of I may be determined by inspection.

I... =102 4+ 205 = 307 amp
I = 98 4 195 = 293 amp

Consequently, 7 = 300 + 7 amp. Limits of error of 2 per cent in I,
and 2.5 per cent in I, combine, in this case, to give a limit of error of
2.3 per cent in I. If the given errors are standard deviations, o, then
Eq. (7-5) may be used to estimate the standard deviation of the sum, I.

or = \/22 + 5% = 5.4 amp

Hence, I = 300 + 5.4 amp. Standard deviations of 2 per cent in 7; and
2.5 per cent in I, combine, in this case, to give a standard deviation of
1.8 per cent in I. The use of o, rather than L, gives a more optimistic
result. This is reasonable since the probability that both Iy and I, are
far from their respective means is small.

For another example, suppose V = 100 + 12 volts and 7 = 10 + 2
amp, and it is desired to determine the error in the resistance B = V/I.
If the stated errors are limits of error, L, the maximum and minimum
values are again determinable by inspection.

112

Rmnx = “g‘ = 14.0 ohms
88
Rmin = ﬁ = 7.3 ohms

Hence, B = 10.0*;:? ohms. The limits of error are unequal in this case.

If the stated errors are standard deviations, o, it is relatively difficult,
even in this simple case, to determine the standard deviation of R unless
an approximate method is used. The sensitiveness of R to changes in
V and I is not the same and, moreover, account must be taken of the
different probabilities of various combinations of V and I. An approxi-
mate method for solving this problem, as well as those involving other
functional forms, is given in the following section.

7-6. Approximate Standard Deviation of Computed Results. It is
possible to develop an approximate formula that enables the standard
deviation of a computed result to be estimated for a given functional
relationship involving any number of variables of specified standard
deviation.

Let w be a known function of the two independent variables » and ».

w = f(up) (7-14)

If w = w4 and v = vy are measured values of the variables, then the
computed result is w = wy = f(uo,v0). The change in w resulting from
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infinitesimal changes du = u — o and dv = v — v, is given by the total

differential of w.
aw=(2%)  au+ d 7-15
W= au U9, av Ug, Vo v ( B )

where the partial derivatives are evaluated at 4 = wo and » = »,. Now
du and dv are deviations from the constants wo and vo. Therefore, if ug
and v, represent the means of the measured variables, then du and dv are
deviations from these means. While Eq. (7-15) holds only for infini-
tesimal changes, it is approximately true for small deviations. It is
assumed that the function may be expressed in this linear form without
the need of higher-order terms in the Taylor series expansion.

The deviations du and dv may be regarded as two independent sets of
variates, each of which is multiplied by a different constant in Eq. (7-15)
and added to form the sum, dw. Consequently, Eq. (7-10) may be used
to express the variance of dw in terms of the variance of the deviations.

2 2
oot = [ (30) o [+ [(59).ov ] (7-16)

It may be shown that the variances of the deviations dw, du, and dv
are equal to the variances of w, u, and v, respectively. For example,
u = ugo + du may be regarded as the sum of two sets of variates, the
first of which is constant, and therefore has zero variance, and the second
of which has a variance oz,2. It follows from Eq. (7-5) that

0 = 0y, + oat = 04’

In similar fashion, it follows for v = v, + dv, that

2

— p— 2
Oy~ = 0'v02 + Oan® = Gay

and for w = w, + dw, that
0w? = 0wt + 0a0® = dan®

Therefore, the interrelationship among the variances of u, v, and w is

e 1o M) I [ N

This approximate result may be extended immediately to more variables.
It is approximate because Eq. (7-15) holds only for infinitesimal devia~
tions, and because Eq. (7-5) is approximate for small numbers of variates.

In the final working result, Eq. (7-17), the partial derivatives serve the
role of weighting factors determined by the functional dependence of w
on u and v, and the constants u, and »o. The square root of the sum of
the squares of the weighted variances yields a standard deviation that
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takes into account the improbability that both u and v are far from their
values uo and vo. The student is cautioned to observe the requirement
that u and v must be independent variables.

An approximate solution for the last example in Sec. 7-5 may now be
readily obtained. First, translate the notation of Eq. (7-17) to the prob-
lem involving R = V/I.

2 2
(0 8 /00

where ¥V, = 100 volts, oy = 12 volts, I, = 10 amp, ¢ = 2 amp,
Ry = Vy/Iy = 10 ohms. The standard deviation of B may be com-
puted after determining and evaluating the partial derivatives appear-
ing in Eq. (7-18).

ok _1 B _ 1 _o,

v = I oV )y, 10"

OR _ _ V. (eR\ _ 100 _ o

al I ol Jy,1, 100 )
Therefore, or? = [0.1(12)]2 4+ [—1.0(2)]? = 5.44

Hence, B = 10 + 2.3 ohms. A standard deviation of 12 per cent in V
and 20 per cent in I combine, in this case, to give a standard deviation
of 23 per cent in RB. As expected, the result is less pessimistic than in
the limit-of-error case, where per cent limits of error were found to be
+40 per cent and —27 per cent.

Notice in this example that the partial-derivative weighting factors
differ in magnitude by 10 to 1 but that the weighted contributions of
oy and o7 to or are comparable in magnitude, 1.2 and 2.0, respectively.
This shows that Eq. (7-17) is capable of indicating which of the several
variables of a function contributes most to the over-all error, and hence
serves as a guide toward improving the accuracy of the final result. In
this example, an improvement in accuracy in I, rather than in V, is indi-
cated for the greatest reduction in op.

7-7. Approximate Limit of Error of Computed Results. In many cases
the limits of error in the computed quantity may be determined by
inspecting the known function and inserting appropriate maximum and
minimum values of the variables to give two extreme results. This was
done in the two previous examples. However, in complicated functions
it may not always be obvious from inspection how to proceed, and
extended computations may be encountered. The differential approach
used for standard deviation in Sec. 7-6 is also applicable to limit of error.
One result of the differential approximation is that the two limits of error
always turn out to be equal in magnitude.
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The infinitesimal deviations, du and dv, in Eq. (7-15) may be regarded
as limits of error of the variables u and v, reckoned from uo and v, respec-
tively. Use of Eq. (7-15) in this manner is again approximate, since the
limits of error may be small but not infinitesimal. It may be seen by
inspection of Eq. (7-15) that dw has its maximum value when both terms
are maximum in magnitude and numerically positive, and its minimum
value when both terms are maximum in magnitude and numerically
negative. Therefore, the limit of error of w is

ow ow
Lw - ’(@)uvaL“ + (5;)“0:’)0[1”

where the bars indicate absolute value. This result may be extended
immediately to more variables. Equation (7-19) is similar to Eq. (7-17)
in possessing partial-derivative weighting factors for each limit of error,
but it does not embody the square root of the sum of the squares feature
of Eq. (7-17). Hence, it is more pessimistic.

It is informative to illustrate the use of this approximate formula for
the R = V/I example previously worked out in accurate detail. First
transform Eq. (7-19) to the notation of the example.

oR oR
Lz = \(W)L + ‘(ﬁ)L

Using the numerical values of the example, with Ly = 12 volts and
Ly = 2 amp, it is found that

Lz =~ 0.1(12)] + |—1.0(2)| = 3.2

(7-19)

Thus, R = 10.0 + 3.2 ohms. The result is more pessimistic than in the
case of standard deviations where +2.3 ohms was found. Moreover, it
is in approximate agreement with the accurately computed results and is
almost precisely equal to the average magnitudes of the accurate limits
of error.

7-8. Special Functional Forms. Functional forms that occur fre-
quently are worth analyzing once and for all to avoid duplication of work.
Investigation of some special cases also serves to illustrate further the
application of Eq. (7-17) which may be applied to any function that is
representable by a linear approximation over a small interval.

a. Sum and Difference. Let w = u £ v. Then ow/du =1 and
dw/dv = +1. Substitute into Eq. (7-17).

vo = /od F o (7-20)

The standard deviation of the sum or difference of two variables is equal
to the square root of the sum of the squares of the standard deviations
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of the variables. The result may be extended immediately to more than
two variables.

b. Simple Product. Let w = w. Then dw/du = v, and ow/dv = u.
Substitute into Eq. (7-17).

g2 | o,

2
2 o 2, 2 2 9 — o2 %% 4 Tv
ow? = v¥,? + ulo, —uv(u2+v2>

7 N2 /_\2
Hence, T ~ \/ (a_,,) -+ (ﬂ> (7-21)
w u v

The fractional standard deviation of the product of two variables is equal
to the square root of the sum of the squares of the fractional standard
deviations of the variables. The result may be extended immediately to
more than two variables.

c. Simple Quotient. Let w = u/v. Then

S|~
o}
g

u
and - = —

(oI NI
S4kS
i

Substitute into Eq. (7-17).

1 u? u? fe,2 | 0,2
Uw2zﬁa'u2+ﬁa'v2=_ +

\ur T
V&) + () @

This result is identical to the case of the simple product.
d. Simple Power. Let w = u® where a is a constant. Then

A

a.
Hence, E’”

—_— a—1 —_— =
Frvlal L and Ew 0

Substitute into Eq. (7-17).

2
Ty
o.w2 ~ a2u2a~2ou2 = y2eq? "

Hence, v ~q <a—"> (7-23)
w u
The fractional standard deviation of a quantity raised to a power, a, is
a times the fractional deviation of the quantity so raised.
The foregoing three results may be generalized into a single form

uspd
W= (7-24)
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where a, b, and ¢ are constants. Equation (7-24) may be differentiated
directly, but it is simpler to first take the logarithm of both sides.

Inw = alnu + blnv — clnz
Now differentiate.

9

&8
8l

1
w ov v w

“\u

H Ow \/20u2 2o',,2 26,2

ence, » =N\ +5b > +c = (7-25)
For the simple product, ¢ = 0, a = 1, b = 1; for the simple quotient,
b=0,a=1,c=1;for the simple power, ¢c = 0, b = 0.

Special cases of the limit of error formula may be developed by similar
means.

7-9. Examples of Combinations of Standard Deviations. Several
examples of combinations of errors for specified standard deviations are
given here to further illustrate the application of the results that have

been presented.
a. Resistors in Series. Two resistors are connected in series.

R, = 200 + 3 ohms and R; = 300 + 6 ohms

where the errors are standard deviations of the given mean values. Find
the (approximate) standard deviation of the equivalent series resistance,
R, = R, + R,. This is special case a of Sec. 7-8. Hence, applying
Eq. (7-20),

or, = V/3* + 6 = 6.7 ohms

Therefore, B, = 500 + 6.7 ohms. A standard deviation of 1.5 per cent
in R; and 2 per cent in R, combine, in this case, to give a 1.3 per cent
standard deviation in R,.

b. Resistors in Parallel. If the same two resistors are connected in
parallel, find the (approximate) standard deviation of the equivalent
parallel resistance.

The equivalent parallel resistance is

_ RiRs
TR+ R

This is not in the form of special case ¢ in Sec. 7-8 because the numerator

R,
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and the denominator of R, are not independent. Resort to Eq. (7-17),
and first determine the partial derivatives.

i () () = (o) -0
oR,  \R:+ R, OR. ). ~ \500 :
(o) (- () -
R,  \R: T R, 0R /.2, — \500 :

Insert these results into Eq. (7-17).
or,? =~ [0.36(3)]% 4+ [0.16(6)]2 = 2.09

Therefore, R, = 120 + 1.4 ohms. A standard deviation of 1.5 per cent
in B, and 2 per cent in R, combine, in this case, to give a standard devi-
ation of 1.2 per cent in R,. It is interesting that while R, is the more
accurate resistor, its contribution to the error in R, exceeds that of R..
This is because R, being smaller than R., has a stronger influence on R,.

As an exercise, the student may wish to rework this example in terms
of conductances G, = 1/R; and G, = 1/R,.

c. Charge on Capacitor. A capacitor C = 1.0 + 0.1 uf is charged to a
voltage V = 20 + 1 volt, where the errors are standard deviations. Find
the charge on the capacitor and its (approximate) standard deviation.

Since @ = CV, this is special case b of Sec. 7-8, in which the fractional
deviations are used. The standard deviation of C is 10 per cent and that
of Vis 5 per cent. Consequently, the fractional standard deviation of Q
is given by Eq. (7-21).

% ~ 4/(0.1)2 + (0.05)2 = 0.11

or 11 per cent. Since @ = 20 X 10~¢ coulomb, then s = 2.2 X 10~
coulomb.
d. Temperature Influence on Resistance. 'The resistance, R, of a copper
wire is given by
R = rl + a(t — 20)]

where 7o = 4 ohms + 0.2 per cent is the resistance of the wire at 20°C,
o = 0.004 per degree centigrade + 1 per cent is the temperature coeffi-
cient of the copper, and t = 25 + 1°C is the actual temperature of the
wire. The stated errors refer to standard deviations. Find the resist-
ance, R, and its (approximate) standard deviation.

The equation may be written as the sum of three terms,

R = ry + reat — 207

However, special case a of Sec. 7-8 is not applicable because the three
terms are not independent. Resort to Eq. (7-17) and first establish the
partial derivatives.
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oR oR

Gre = 1+ alt = 20) <_aro>.,,z:,, =1 + 0.004(25 — 20) = 1.02
R oR -

*a—a— = To(t - 20) (E)m:zn - 4(25 - 20) =20

oRr R

W = rox (W)m’gn = 4(0004) = 0.016

Extending Eq. (7-17) to the case of three variables, one obtains
or® = (1.020,,)% + (2004)2 + (0.0160,)*

where ¢,, = 8 X 10—% ohm (converting 0.2 per cent), g, = 4 X 1075 per °C
(converting 1 per cent), and o, = 1°C. With these values

or? = (67 + 64 + 3) X 108 = 134 X 1078
The mean value of R is
R = 4[1 + 0.004(25 — 20)] = 4.08 ohms

Therefore, B = 4.08 + 0.3 per cent.
7-10. Limit of Error in Control Setting. A final example illustrating
approximate limit of error calculations in a case requiring circuit analysis

r R 1
kR
<Ry

é 02
Fi1a. 7-1. Shunted control.

is presented here. In the circuit of Fig. 7-1, a control resistance, R, is
shunted by a fixed resistor, r, to produce different types of resistance
variations between points 1 and 2. The fraction of the control resist-
ance appearing directly between points 1 and 2 is designated by k, where
0 <k < 1.0. The problem is to find the limit of error of the input
resistance, Ris, that results from specified limits of error in R, r, and the
setting of the sliding contact, k. The results depend in an interesting
manner on the size of r relative to B. Since this is a useful arrangement
which, effectively, changes the taper of the control, it will be investigated
in general terms prior to solving a specific numerical example.

The resistance Ris is given by the rule for combining two parallel
resistors, one of which is kR, in the circuit of Fig. 7-1, and the other is
r4+ (1 — k)R. Hence,

Ry = kR[r + (1 — k)R]
r+ R




|

§7-10] COMBINATIONS OF ERRORS 175
Define p = r/R. Then

_KkR[pR+ (1 — k)R] _ Rk(1 + p — k)
- pR + R - 1+,

A plot of the dimensionless quantities Ri2/R vs. k for various values
of p is given in Fig. 7-2. It is apparent that a variety of resistance
characteristics is possible. The slope of the curves is revealing and is

given by
d (Ru\ _ 3 [kQ+p—k]_, 2k s
EE(T)“%[ 1+, ]‘1 1+ (7-27)

Thus, for p— « (r removed), the slope is constant and equal to 1.0.
For p = 0 (r a short circuit), the slope is 1 — 2k and is, therefore, zero at

Ry, (7-26)

10}
Brz _p1o k
R T
08 te /f
Q
,
==
R 2
Q
0.6 |-
Ryp =1
= ?
0.4}
=1
0.2} Lo
1 1 1 PR | " 1 L
0 0.2 0.4 0.6 0.8 1.0

k
F1a. 7-2. Characteristics of shunted control.

k = 14, which is a point of maximum R;,/R. The maximum value,
R1:/R = 14, may be calculated from Eq. (7-26) with p = 0 and k = Ls.
For p = 1 (r = R), the slope is 1 — k and is, therefore, zero at k = 1.
For p > 1, the slope is always positive since k cannot exceed unity. The
curves of Fig. 7-2 suggest the complicated manner in which deviations of
p and k may affect R,,/R, depending upon the actual values of p and k.

As a specific example, suppose B = 10,000 + 100 ohms, r = 0, and
k = 0.6 £ 0.03, where the given deviations are limits of error. (This is
the point marked on the p = 0 curve of Fig. 7-2.) There are two pro-
cedures available for finding the limit of error in R, which, in the case of
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r = 0, is given by
Ri2 = Rk(1 — k) = R(k — k?) (7-28)

An accurate computation may be made after careful study of Eq. (7-28)
to determine by inspection the most unfavorable combinations of R and k.
The slope of the p = 0 curve in Fig. 7-2 at £ = 0.6 is negative. Hence,
the most unfavorable combinations for K and k occur when R is high and
k is low, and vice versa. Therefore,

Risnn. = 10,100(0.57)(1 — 0.57) = 2,475 ohms
Risn = 9,900(0.63)(1 — 0.63) = 2,307 ohms

Thus, R, = 2,400+ ohms, and the limits of error are unequal.

An approximate computation may be carried out by applying Eq.
(7-19), thereby avoiding the inspection problem above, but with some
sacrifice in accuracy. The required partial derivatives are

a1312 _ _ aRl? _ _

SR = k1 —h) <aR >m::m = 0.6(1 — 0.6) = 0.24

aRm _ 6R12 _ 4 _—

5 = B(L—2k) ( 5 >m’z;n = 1041 — 1.2) = —0.2 X 10*

Inserting these values into Eq. (7-19), one obtains
Lz, =~ |0.24(100)| + |—0.2 X 10*(0.03)| = 84

Therefore, Ry, = 2,400 + 84 ohms. The limits are reasonably close to
the previous calculation, and equal to the average magnitude of the two
unequal limits of error.

PROBLEMS

7-1 (§2). Show that the result in Eq. (7-5) for the variances holds equally well for
the squares of probable errors, or for the squares of average deviations.

7-2 (§4). A large set of normally distributed variates of standard deviation ¢ is
divided randomly into two equal parts. (a) What is the standard deviation of each
of the smaller sets? (b) What is the ratio of the standard deviation of the mean of
one-half the set to the standard deviation of the mean of the original set? (¢) What
is the standard deviation of a sum set, a typical member of which is the sum of one
variate picked at random from one-half the variates, and the other picked from the
other half?

7-3 (§4). The mean value of a standard resistance was determined by elaborate
precision methods to be 1.0000 ohms + 0.03 per cent (standard deviation of the mean).
Six months later, the resistance was measured again with equal skill and care with the
mean result 0.9998 ohm. What is the probability that the standard resistance has not
changed?

7-4 (§4). A box contains 49 nominally identical ‘little fuses.” The resistance of
each fuse is measured independently with equal skill and care. Analysis of the data
shows a normal distribution with mean value of resistance equal to 200 ohms and a
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standard deviation of 7 ohms. If the above box is one of a large set of boxes, each
containing 49 fuses of the same nominal resistance and selected at random from the
same production run, what is the probability of finding, among this set, a box for
which the mean value of fuse resistance is less than 197 ohms?

7-6 (§6). Two resistors, By = 400 * 40 ohms and R, = 600 * 80 ohms, are con-
nected in parallel. The stated errors are standard deviations. What are the resist-
ance and standard deviation of the parallel combination?

7-6 (§6). The voltage drop across a resistor, of specified standard deviation 0.1
per cent, must be maintained within +0.2 per cent of its mean value. What must be
the accuracy of an ammeter used in series with the resistor to monitor the current?

7-7 (§8). The voltage, V, across a resistance and the current, 7, through the resist-
ance are determined with the same per cent accuracy. The error in the resistance,
calculated from R = V/I, is 1.0 per cent. With what accuracy were V and 1
determined?

7-8 (§8). Determine an expression for ¢, in terms of ¢, if w = klnu, where k is a
constant.

7-9 (§8). Determine an expression for L,, in terms of L,, L,, and L, for the function
in Eq. (7-24), and show that it reduces to the correct results for the last three special
cases of Sec. 7-8.

7-10 (§9). The current, I, through a resistor of value 50 + 5 ohms (standard
deviation) is measured with the result I = 10.0 amp + 5 per cent standard deviation.
(a) Compute the power dissipated in the resistance and its standard deviation. (b)
Which contributes more to the uncertainty in the power, the uncertainty in the current
or in the resistance?

7-11 (§9). Five resistors are available, one of 20 ohms and four of 10 ohms each.
The standard deviation of the 20-ohm resistor is 5 per cent, and the standard deviation
of each 10-ohm resistor is 10 per cent. Three possible connections using these resistors
are shown in Fig. 7-3. Which connection would you use to obtain a resistance of
30 ohms with the least error? What is the standard deviation of the best connection?

100 10 10Q
A — N N—NN—ANN—

209 100
Bo—AN\ NV °

T Input T

10Q 10Q
20Q Output
Co o
To high
impedance
Fia. 7-3. Connections for 30-ohm resistance. Fie. 7-4. Voltage divider.

7-12 (§9). The voltage divider shown in Fig. 7-4 is to produce an output equal tc
one-tenth of its input. The standard deviation of the ratio of output to input must be
0.1 per cent or less. A 100-ohm precision resistor of standard deviation 0.02 per cent
is available. What is the maximum allowable standard deviation of the 900-ohm
resistor?

7-13 (§9). The law of deflection of a uniform-field d’Arsonval galvanometer was
shown to be I = K6/cos 6. If the angle of deflection, 6, is known to be within +¢.1°
(standard deviation) of 15° what is the per cent standard deviation of the current, I?
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7-14 (§9). An experiment was performed in order to accurately determine the
period, T, and the ratio of total damping to the moment of inertia, D/J, for an under-
damped d’Arsonval galvanometer with a uniform radial field and negligible coil
inductance. Starting at rest with zero scale deflection, d, the switch in Fig. 4-1 was
closed at ¢ = 0. The maximum deflection, dn, and the time, ¢, at which it oceurred
were measured. The final steady-state deflection, d,, was measured after the galva-
nometer had stopped oscillating. The entire procedure was repeated 20 times with
the results shown below. In each case, d. = 20.0 mm was the final observed
deflection.

Terl dm, N | i, SEC TNT?I dm, mm | tn, Sec
1 27.6 2.8 11 30.1 3.1
2 23.7 3.1 12 26.4 2.8
3 26.0 2.9 13 27.8 2.9
4 28.3 3.0 14 25.2 3.2
5 27.1 2.9 15 27 .4 3.0
6 29.2 3.0 16 24.6 3.1
7 24.8 3.0 17 28.7 3.0
8 28.0 3.1 18 29.0 2.8
9 27.2 2.9 19 26.2 3.2

10 25.9 3.2 20 26.8 3.0

Calculate the mean and standard deviation of T and D/J.

7-16 (§10). Compute the accurate and approximate limits of error of the input
resistance, R1s, in Fig. 7-1, for R = 10,000 + 100 ohms (limit of error), k¥ = 0.3 + 0.03
(limit of error), and r = 0.

7-16 (§10). Repeat Prob. 7-15 using k = 0.5 + 0.03 (limit of error).



CHAPTER 8

DEFLECTION METHODS OF MEASUREMENT

A vast number of different methods of measurement have been devised
and found useful. They encompass a wide range of techniques and
approaches and utilize every conceivable type of apparatus. In any
given instance, the choice among this large assortment is usually deter-
mined by balancing all pertinent factors, including such items as required
accuracy, cost, time, convenience, and availability of equipment.

To provide a framework for an over-all discussion, two types of
measurement, direct and indirect, are described. While the distinction
between these two types is not fundamental, it permits an initial view of
a broad subject. Measurement methods are classified into the two major
categories of deflection and null methods. An attempt is made to sub-
divide these further into a number of basic types. Several common
deflection methods of measurement in popular use, as well as a few special
methods, are described. Examples are presented primarily from the d-c
and low-frequency electrical areas. However, the student should realize
that similar concepts and methods are used in high-frequency electrical
measurements and in other experimental fields.

This chapter provides perspective on a number of possibilities that
exist for performing deflection-type measurements. It is hoped that the
variety is sufficient to stimulate the student’s imagination and creative
thoughts. The examples represent the collective product of individual
minds driven by curiosity and the will to do something better. There is
ample room for further ingenuity. At the same time, close thought and
analysis, required for a firm grasp of the principles, should be interwoven
so that some depth is provided along with the over-all view of a gangling
subject.

8-1. Direct and Indirect Measurements. Direct measurements are
those in which the desired result is obtained immediately in the form of
raw data. For example, if the objective is to determine the current in a
circuit, it may be measured directly with an ammeter. Indirect measure-
ments are those in which the desired result is computed from the raw data,
as a separate operation, using a formula or physical law that relates the
measured quantities to the quantity of interest. For instance, if the
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objective is to determine the voltage across a resistor, its resistance and
the current through it may be measured, and the voltage computed from
their product.

Direct measurements are usually more convenient and rapid than
indirect ones. Consequently, they are appealing if they meet other
requirements of the measurement task. To illustrate, a wattmeter,
yielding direct readings of power, is preferable from a convenience stand-
point to calculating the power from voltage and current readings. How-
ever, the attainable accuracy in direct measurements may be less than in
the indirect case. This may seem curious because of the separate steps
necessary in indirect measurements, each of which invites error, but it
may be clarified by taking a closer look at direct measurements.

The distinction between direct and indirect measurements is an impor-
tant practical matter. But there is really very little fundamental differ-
ence between the two. The direct measurement in many instances turns
out to employ an instrument that responds to the same quantities as those
obtainable indirectly, but carries out the computation automatically.
Consider a voltmeter equipped with a scale that already takes into
account the current times resistance calculation. It provides a direct
voltage reading, but is essentially an ammeter in series with a known
resistance. Similarly, a wattmeter may be constructed using a meter
movement in which the deflection depends upon the product of two differ-
ent currents in two separate coils. If the current in one coil is the load
current, and the current in the other coil is proportional to load voltage
(a known series resistor may be used), then the scale may be calibrated
directly in watts. But, fundamentally, this direct-reading instrument
does not really measure power directly at all. In direct methods of this
type, reliance is placed on the instrument to carry out a calculation that
otherwise would be necessary had indirect measurements been employed.
Since the instrument ‘‘computation” always contains some error, it
becomes clear why indirect measurements, entailing no subsequent com-
putational error, might be capable of greater accuracy. Moreover, some
direct-reading instruments are designed primarily for convenience and
do not purport to be highly accurate.

It is an interesting mental exercise to review various direct measure-
ments and to discover that each one involves a built-in computation that
otherwise would have to be performed separately if indirect measurements
were used. This principle applies even in such simple direct measure-
ments as length (with a ruler), or time interval (with a stop watch),
although the simplicity of the computation might cause it to be over-
looked in these cases.

8-2. Methods of Measurement. Direct or indirect measurements may
be undertaken by use of two general methods:
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1. Deflection methods, in which the deflection of an instrument pro-
vides a basis for determining the quantity.

2. Null methods, in which a zero or null indication of an instrument
leads to a determination of the quantity from other known conditions.
Deflection methods that provide a direct reading of the quantity rely
on the calibration of the instrument. However, some deflection methods
do not utilize the instrument calibration but merely require that the
reading of the instrument be the same under two different sets of con-
ditions. The prime distinction between deflection and null methods is
that in the former the instrument actually displays a deflection, while in
the latter the indication is as close to zero as attainable.

Deflection methods are usually intuitively acceptable on superficial
exposure, while some null methods tend to be more obscure and subtle.
Null methods are often capable of
greater precision than deflection Direct or indirect

methods and are usually preferred measurements

in accurate work. Deflection meth- Deflection Nul
ods are vulnerable to instrument methods methods
errors, especially when reliance is
placed upon the calibration of the

instrument. Null methods some-
times require multiple manipula-

tions to obtain a satisfactory zero
indication, while deflection meth-

ods may be very rapid. However,
some null methods are actually eas-

. Other special
ier and faster to execute than deflec- design:tions

tion methods. Moreover, there are
commercially available automatic-
control instruments that maintain a continuous null under varying con-
ditions, and they eliminate the need for manipulative operations.

An attempt is made to classify deflection and null methods into the
subdivisions indicated in Fig. 8-1. The first ‘“general” category includes
a variety of methods that do not appropriately fit elsewhere. General
deflection methods will be discussed first in this chapter. Basic methods
in common use include the comparison method, substitution method, and
the differential method. These will be described further in this and the
following chapter. A multitude of other methods having special desig-
nations, indicated at the bottom of Fig. 8-1, deserve comment here.

A method will frequently be designated by the name of the individual
associated with its development. This is particularly true in bridge cir-
cuits where such names as Wheatstone, Kelvin, Schering, Campbell,
Wien, and many others are used to describe the circuit. But bridge

Fia. 8-1. Methods of measurement.
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methods are basically comparison methods and would be so classified in
Fig. 8-1. Personal designations, however well deserved, are often mis-
leading from the standpoint of the principles involved.

On the other hand, there are additional methods, not specifically shown
in Tig. 8-1, that do merit special designation on the basis of principle.
For example, the ballistic method is a basic one in which a sudden
mechanical or electrical impulse produces a measurable result. The bal-
listic method is used to determine magnetic flux by inducing a short-lived
emf in a galvanometer circuit. The charge that flows in the circuit is
proportional to the change in flux linkages and may be determined from
the deflection of a ballistic galvanometer.

Many methods are difficult to classify on the basis of their customary
designations. For instance, there are resonance methods, heterodyne
methods, feedback methods, transmission-line methods, attenuator meth-
ods, and many others. Careful study of the principles upon which these
methods rest might reveal that they properly belong in some category
already designated in Fig. 8-1. Or, they might represent the combination
of two separate methods, as in the case of a resonance bridge that will be
analyzed later. The truth of the matter is that the field of measurement
has developed in so many different directions that it is nearly impossible
to organize it into neat packages. Understanding the method itself is,
of course, far more important than deciding upon its classification. How-
ever, the classification may be worthwhile to organize one’s thinking and
to highlight similarities that exist among methods of the same basic type.

8-3. Direct General Deflection Methods. Direct measurements em-
ploying general deflection methods will be discussed first. Two illus-
trations have already been presented in Chap. 3: the ammeter (calibrated
to read current) and the voltmeter (calibrated to read voltage). Other
examples include ohmmeters (calibrated to read resistance) and watt-
meters (calibrated to read power). The ohmmeter is discussed in the
following sections while the electrodynamometer wattmeter is presented
in Chap. 12. Direct measurements may also be carried out with such
instruments as frequency meters, phase-angle meters, watthour meters,
power-factor meters, capacitance meters, Z-angle meters, and a host of
others.

The ohmmeter is a popular device used for rapidly measuring d-c
resistance of passive electrical elements or